
ChimeraTL: Transfer Learning in DBMS
with Fewer Samples

Tatsuhiro Nakamori3, Shohei Matsuura1, Takashi Miyazaki1,
Sho Nakazono1, Taiki Sato1, Takashi Hoshino2, Hideyuki Kawashima3

LY Corporation1, Cybozu Labs2, Keio University3

Abstract—In the field of database management systems
(DBMS), it is essential to build a performance prediction model
with less data from the target environment, motivating the
application of transfer learning. While some parameters in
DBMS have similar effects on performance across different
hardware environments, others can have varying effects that
depend on underlying hardware limitations. Previous studies do
not leverage this information to improve the transfer learning. We
propose ChimeraTL, a novel method that accounts for different
parameter types to enhance transfer learning. Our experiments
demonstrate that ChimeraTL needs only 50% of samples that
state-of-the-art methods require to minimize the prediction error
to under 10%.

Index Terms—Transfer Learning, DBMS

I. INTRODUCTION

A. Motivation

Database management systems (DBMS) are an integral
component of applications. One aspect of Database manage-
ment systems (DBMS) that makes it essential in many appli-
cations is its adaptivity. DBMS has many configuration pa-
rameters (e.g. 190 in MySQL [1] and 170 in PostgreSQL [2],
[3]) that users can adjust to optimize to specific settings and
meet the user requirements. Recent studies have emphasized
building performance prediction models instead of relying on
heuristics to find optimal configurations [4].

While existing studies target learning performance predic-
tion models for unseen workloads [3]–[7], they assume that the
model is learned from the same hardware environment where it
is used. In reality, DBMS users can test the performance of the
DBMS with various configurations in a testing environment
and build a performance prediction model to estimate the
performance of the DBMS in the production environment [8].
However, since a testing environment is often a scaled-down
version of a production environment, the model learned from
the testing environment may not be accurate in predicting the
performance of the production environment. What developers
can do instead is to extract the knowledge of the testing
environment that can be reused to build an accurate model
for the production environment.

Such an approach to reduce the learning cost by utilizing the
data from a different but related environment is an example of

This paper is based on results obtained from “Research and Development
Project of the Enhanced Infrastructures for Post-5G Information and Com-
munication Systems” (JPNP20017) and (JPNP16007) commissioned by the
New Energy and Industrial Technology Development Organization (NEDO)
and JSPS KAKENHI Grant Number 22H03596.

transfer learning [9], [10]. Our motivation is to apply transfer
learning techniques to learn a DBMS performance prediction
model using fewer samples from the target environment.

B. Problem

Transfer learning for configurable software systems has
been discussed in previous literature [9]–[12]. While previous
transfer learning approaches [9]–[11] are effective in specific
settings, they must consider the following properties of DBMS
parameters to make the transfer of knowledge more effective.

1. Parameters are not binary: Previous studies focused
their evaluation on cases in which the configuration parameters
were binary, i.e., the parameter is either on or off [9], [11],
[12], but the parameters in DBMS often have a wide range of
values (e.g. buffer pool size in MySQL [13]). Since there are
numerous parameters with wide value ranges, existing transfer
learning approaches would require more samples than desired
to learn an accurate model for the vast configuration space.

2. Parameter effects can be machine specific: Although
studies have shown that the performance functions of many
parameters between two environments have a linear relation-
ship [11], [12], employing a strategy based on the assumption
that all parameters follow this pattern can cause a significant
bias in the model. Fig. 1 shows the relationship between the
throughput of two environments for varying configurations in
LineairDB [14]. It is evident that the relationship is not linear
because two machines have different saturation points when
the number of threads is varied. This example shows that some
parameters are machine specific, having different effects on
performance depending on the hardware limitations.

To build an accurate performance model of DBMS with
fewer samples from the target environment, we need to con-
sider the above properties by exploiting the knowledge of pa-
rameters that are consistent in their performance impact across
diverse hardware environments while avoiding the inaccuracies
caused by transferring the knowledge of parameters that have
machine-specific effects. Nonetheless, to our knowledge, no
existing transfer learning technique considers such a design.

C. Contribution

We present ChimeraTL, a transfer learning pipeline to build
an accurate performance model of DBMS with fewer sam-
ples from the target environment. It combines three existing
methods: ModelShift [11], DataReuseTL [10], and L2S [9],
in a way that maximizes their advantages and minimizes their



disadvantages. It consists of three procedures: (1) parameter
selection [9] and separation, (2) linear transformation learning
[10], [11], and (3) machine-specific parameter learning.

First, ChimeraTL starts by selecting parameters that have
significant impact on performance and separating them into
universal parameters (parameters that have similar perfor-
mance effects across different environments) and machine-
specific parameters (parameters that have different perfor-
mance effects depending on the hardware limitations). While
parameter selection has been a common preprocessing tech-
nique in DBMS performance prediction models [1], [4], to
the best of our knowledge, none of the previous studies have
considered classifying different types of parameters. Previous
methods have assumed that all parameters have same behavior
in different environments. This assumption causes a negative
transfer to the model learning in the target environment.
Parameter separation in ChimeraTL is a novel technique that
allows the integration of ModelShift, DataReuseTL, and L2S
while minimizing the negative transfer that may occur in each
method.

After identifying the universal parameters, ChimeraTL sam-
ples data of the universal parameters from the target environ-
ment. Using the sampled target data and the source data of
the same parameters, ChimeraTL learns a linear transformation
between the two environments. ChimeraTL then linearly trans-
forms the source data of universal parameters and uses them
as additional training data to build a performance prediction
model for the target environment. By linearly transforming
the source data, ChimeraTL can reuse the knowledge of the
source environment while avoiding the bias caused by the
difference between the source and target environments. Once
there is enough data on the universal parameters, ChimeraTL
prioritizes sampling the data of machine-specific parameters
from the target environment.

Compared with learning the model from scratch in the
target environment, ChimeraTL minimizes the prediction error
to less than 10% using 70% fewer samples. None of the
previously noted state-of-the-art transfer learning techniques
[9]–[11] can achieve this level of accuracy with the same
number of samples.

II. PRELIMINARIES

A. Objective

The goal of transfer learning is to reduce the learning cost
in a target environment by utilizing the data from a different
but related environment [9], [10]. In this paper, we regard
the number of samples from the target environment to be the
indicator of the cost.

We define a sample as a pair of DBMS parameter settings
and the corresponding measure of DBMS performance. In
order to collect one sample, we set the parameters to desired
values, run a workload for the DBMS to process, and measure
the performance during the workload. The duration of one
sampling iteration depends on the workload. Previous study
has taken the average performance over 5 minutes as one

sample [4]. By using this sample as a training data, perfor-
mance prediction models can learn the relationship between
the parameters and the performance.

B. Transfer Learning Methods

In this paper, we compare the transfer learning methods for
the performance prediction of configurable software systems.

ModelShift [11] is a type of transfer learning where the
performance model learned from the source environment is
linearly transformed to predict the performance of the target
environment as in Fig. 1. The previous study has shown that
ModelShift requires less than 10 samples from the target envi-
ronment to learn appropriate linear transformation coefficients
[11].

DataReuseTL [10] uses the source environment data and
data samples from the target environment to build a prediction
model. DataReuseTL works well even with a few samples
from the target environment when the source and target
environments have minor differences.

L2S [9], [12] identifies important parameters likely to
be shared between the source and target environments and
samples the data of those parameters to build a model for
the target environment. Because this method does not use the
source environment data for model construction, there are no
concerns about the bias caused by the difference between the
source and target environments.

C. Universal and Machine-specific Parameters

Parameters in DBMS (and other configurable software
systems) can be categorized into two types: universal and
machine-specific. Universal parameters affect the performance
of a DBMS similarly in different environments. Formally, a
parameter pi is universal if it satisfies the following equation:

ftgt(pi) = β×fsrc(pi) + β0 (1)

where ftgt(pi) represents the performance function in a target
environment, and β×fsrc(pi) + β0 denotes a linear transfor-
mation of the performance function in a source environment.
Fig. 2a shows an example of a universal parameter in Lin-
eairDB. The figure shows that the performance function of the
parameter has similar shapes in different environments and that
the performance in one environment can be approximated by
linearly transforming the performance in another. Considering
that it takes less than 10 samples from the target environment
to learn the linear transformation [11], the data of universal
parameters from the source environment should be exploited
to build a model using fewer samples.

The remaining parameters are machine-specific parameters
that behave differently in different environments. Fig. 2b
shows an example of such a parameter. The three environments
in the figure have varying trends for the same parameter
value. Using the data of machine-specific parameters from the
source environment to build a model for the target environment
is problematic because the data from the source may not
reflect the actual relationship between the parameter values
and performance in the target.



40000
60000

80000
100000

120000
140000

8c_16g Throughput

250005000075000100000125000150000175000200000225000

16
c_

24
g 

Th
ro

ug
hp

ut

1
2

4
6
8
10
12
141618202224r-squared = 0.852

n = 13
label: number of threads

Fig. 1: Association of LineairDB [14]
throughput between two environments and a
linear regression model – Each point shows a
parameter value. 8c_16g represents 8 core,
16 GB RAM machine.

1 10 20 30
checkpoint_interval

18000

20000

22000

24000

26000

Th
ro

ug
hp

ut

4c6g
8c12g
16c24g

(a) Universal parameter

0 5 10 15 20 25
clients

50000
75000

100000
125000
150000
175000
200000
225000

Th
ro

ug
hp

ut

4c6g
8c12g
16c24g

(b) Machine-specific parameter

Fig. 2: Performance functions of universal and machine-specific pa-
rameters – Each line represents the performance function of a parameter
in a different environment. For example, 4c6g represents the performance
function of a parameter in an environment with 4 CPU cores and 6 GB of
memory.

D. Limitations of Existing Methods

Each method described in Section II-B does not consider the
difference between universal and machine-specific parameters,
which leads to disadvantages in different ways. ModelShift and
DataReuseTL work under the assumption that all parameters
are universal. Since machine-specific parameters in DBMS
may affect the performance differently depending on the
underlying hardware environment, the resulting model may
suffer from a bias caused by the difference between the source
and target environments. Similarly, L2S does not distinguish
between machine-specific and universal parameters. Because
L2S does not use the source environment data for model
construction, there are no concerns about the bias. However,
it does not exploit the source environment data of universal
parameters, losing on the opportunity to reduce the amount
of samples necessary from the target environment to build
a practical model. This is especially problematic in the case
of DBMS. Since the parameter space of DBMS is vast, L2S
has to compensate for the lack of source environment data by
collecting more samples from the target environment.

We need to differentiate between universal and machine-
specific parameters to build a high-accuracy DBMS perfor-
mance prediction model using fewer samples from the target
environment.

III. CHIMERATL

ChimeraTL is a transfer learning method that combines
the elements of ModelShift, DataReuseTL, and L2S in a
way that maximizes their advantages and minimizes their
disadvantages. It consists of three procedures: (1) parameter
selection and separation, (2) linear transformation learning,
and (3) machine-specific parameter learning.

A. Parameter Selection and Separation

The first step of ChimeraTL is to select parameters that sig-
nificantly impact performance and separate them into universal
and machine-specific parameters. In the studies of DBMS
performance models, parameter selection is a common practice

Target

3. Linear Transformation
from Source to Target

Source Universal
Machine
specific

1. Parameter Separation

2. Machine-specific
Parameter Sampling

4. Fit Model on 
Sampled Data &
Transformed Data

Fig. 3: ChimeraTL Pipeline

because the number of parameters in DBMS is usually large,
and not all of them significantly impact performance [1], [4].
As in L2S [9], we use stepwise regression [15] to automatically
select impactful parameters.

While many studies have incorporated parameter selection
into their approach, to the best of our knowledge, no existing
method separates parameters into universal and machine-
specific ones. Therefore, we propose an algorithm that uses
Bhattacharyya distance [16] to separate parameters based on
the difference in their performance functions between two
environments.

Bhattacharyya distance is a measure of the similarity be-
tween two probability distributions. We use Bhattacharyya
distance for parameter separation because it considers the
entire distribution, accounting for variations beyond mean,
variance, or absolute differences [17]. Additionally, Bhat-
tacharyya distance’s symmetric nature allows straightforward
threshold setting, providing consistent interpretation regardless
of the chosen reference distribution.

The parameter separation algorithm is shown in Algo-
rithm 1. The process requires data of performance functions



Algorithm 1 Parameter separation
Require:

P : set of parameters
f1: performance function in primary source environment
f2: performance function in secondary source environment
T : threshold

Ensure:
Puv: set of universal parameters
Pms: set of machine-specific parameters

1: Puv ← ∅
2: Pms ← ∅
3: for pi ∈ P do
4: p1(pi)← normalize(f1(pi))
5: p2(pi)← normalize(f2(pi))
6: d← BhattacharyyaDistance(p1(pi), p2(pi))
7: if d < T then
8: Puv ← Puv ∪ pi

9: else
10: Pms ← Pms ∪ pi

11: return Puv , Pms

in primary and secondary source environments. Under the
assumption that it is cheap to collect data outside the target
environment, we set up two docker containers with different
resource restrictions in a source environment to obtain distinct
data. The initial step of the algorithm is to convert each perfor-
mance function of a parameter into a probability distribution
(Line 4, 5). Then, the Bhattacharyya distance between the two
probability distributions is calculated (Line 6). If the distance
is smaller than a threshold T , the parameter is considered
universal, and otherwise, it is considered machine-specific
(Line 7).

B. Learning in Target Environment

Once the parameters are separated into universal and
machine-specific parameters, ChimeraTL is ready to collect
data from the target environment. For the first few samples,
ChimeraTL focuses on collecting data of universal parameters
to learn the linear transformation between the source and target
environments. With just a few samples, ChimeraTL can learn
the linear transformation and reuse the source environment
data of universal parameters for target model construction. Af-
ter collecting a set amount of samples for linear transformation
learning, ChimeraTL prioritizes collecting data of machine-
specific parameters unavailable in the source environment.

One iteration of the sampling process is shown in Algo-
rithm 2. The sampling rate of universal parameters (ur) and
the number of samples for priority switching (N ) are the two
parameters of ChimeraTL that control the sampling process.

At the end of each iteration, ChimeraTL fits a performance
prediction model using the collected data. We use Gaussian
Process (GP) regression [18] as the model because it is known
to be effective in modeling configurable systems [4], [6], [7],
[9], [10].

1) Linear Transformation Learning: Learning the linear
transformation between the source and target environments is
an essential step that enables ChimeraTL to reuse the data

Algorithm 2 Sampling in the target environment
Require:

Puv: set of universal parameters
Pms: set of machine-specific parameters
N : number of samples for priority switching
ur: sampling rate of universal parameters
fsrc: performance function in the source environment
model: performance prediction model

Ensure:
Dtgt: target data
Dtgt

uv : target data of universal parameters
Dsrc

uv : source data of universal parameters

1: function RUNNEXTITERATION
2: sample universal← Random() < ur
3: if sample universal then
4: SampleUniversal()
5: if size(Dtgt

uv ) = N then
6: ur ← 1− ur
7: else
8: SampleMachineSpecific()
9: FitModel(Dtrain)

10:
11: function SAMPLEUNIVERSAL
12: pi ← RandomChoice(Puv)
13: Dsrc

uv ← Dsrc
uv ∪ {fsrc(pi)}

14: Dtgt
uv ← Dtgt

uv ∪ {sample(ftgt(pi))}
15: regression data← MergeOnConfig(Dsrc

uv , Dtgt
uv )

16: β ← LinearRegression(regression data)
17: Dtgt ← Dtgt ∪ {ftgt(pi)}
18:
19: function SAMPLEMACHINESPECIFIC
20: pi ← RandomChoice(Pms)
21: Dtgt ← Dtgt ∪ {ftgt(pi)}
22:
23: function FITMODEL
24: universal data← {fsrc(pi) |pi ∈ Puv}
25: data← Transform(universal data,β)
26: data← {d ∈ data |Config(d) /∈ Config(Dtgt)}
27: data← data ∪Dtgt

28: model.fit(data)

of universal parameters from the source environment. Reusing
the linearly transformed source data dramatically reduces the
number of samples from the target environment required to
build a model.

Each time a new sample of universal parameters is collected
from the target environment, ChimeraTL merges the sample
with the source environment data of the same configuration
and fits a linear regression model to the merged data (Line 11).
The linear regression model is used to transform the universal
parameter data in the source environment into an estimation
of the performance in the target environment (Line 25). The
transformed data is then combined with the samples from the
target environment to build a performance prediction model
(Line 27).

Unlike ModelShift [11], ChimeraTL does not assume that
all the parameters are universal. Constructing a linear re-
gression model using all the parameters would cause neg-
ative transfer because the machine-specific parameters may



TABLE I: Parameters of LineairDB

Parameter Range Default value

clients 1-24 1
checkpoint_interval 1-30 30

epoch_duration 1-40 40
prefetch_locality 0-3 3
rehash_threshold 0.1-0.99 0.8

not follow the pattern of the universal parameters. Instead,
ChimeraTL only samples the data of universal parameters
selected in Section III-A to learn the linear regression. Simi-
larly, the linear regression model is only used to transform the
source data of universal parameters, and the source data of
machine-specific parameters are not used in the target model
construction.

2) Machine-specific Parameter Learning: Initially,
ChimeraTL samples the data of universal parameters more
frequently than the other parameters. However, the benefit
of sampling those data diminishes after learning the linear
transformation because the linearly transformed source
data can substitute the target environment data of universal
parameters for model construction. Once there are enough
data of the universal parameters, ChimeraTL prioritizes
sampling the data of machine-specific parameters from the
target environment to capture the trends of these parameters
that are not observable in the source environment.

IV. EVALUATION

We compare ChimeraTL with the following four methods:
ModelShift, DataReuseTL, L2S, and L2S+DataReuseTL (a
combined approach of DataReuseTL and L2S [9]).

Although the original papers of ModelShift and
DataReuseTL do not conduct parameter selection, we
perform parameter selection using stepwise regression [15]
for these methods to achieve the best performance. In
addition, we use the same GP regression model as the
performance prediction model for all the methods to ensure a
fair comparison of transfer learning approaches.

A. Experimental Setup

For all the experiments, we use LineairDB [14], an open-
source transactional storage engine based on Silo [19], to
generate performance data. The parameter space of LineairDB
is shown in Table I.

Table II shows the source and target environments used
in the experiments. We set up a docker container on each
environment to control the amount of resources available. We
use two completely different host machines to simulate the
case where developers test their software on a local machine
and deploy it on a server.

We measure the performance of LineairDB by running
YCSB-A workload [20]. For each sampling process, the
benchmark is executed for 15 seconds, and the performance is
assessed by calculating the average over this duration. In all
the experiments, we assume the workload is the same between
the source and target environments. This assumption is realistic

TABLE II: Source and target environments – The secondary
source environment is used for the parameter separation. The
host machines for the source and target are Apple M3 MAX
laptop and PRIMERGY RX2540 M4 server with Intel(R)
Xeon(R) Gold 6130, respectively.

Docker Environment #Cores RAM Size

Primary Source (Laptop) 8 12 GB
Secondary Source (Laptop) 4 6 GB

Target (Server) 24 32 GB

because application developers test their software for expected
workloads before deploying it to the target environment. For
the performance metric, we use the throughput of the database,
which is the number of transactions processed per second.

B. Parameter Separation Result

ChimeraTL’s parameter separation algorithm categorizes
clients parameter as machine-specific and the rest as uni-
versal. As Fig.2b shows, it is visibly clear that the performance
functions of the parameter do not have a linear relationship
with each other. The classification results from ChimeraTL
align with our intuitive expectations.

The parameter separation completes in about 14 millisec-
onds, incurring a negligible cost relative to the overall model
training procedure. In contrast, it substantially improves the
effectiveness of ChimeraTL’s transfer learning as discussed in
Section IV-D.

C. Comparison with Existing Methods

Fig. 4 shows the number of samples required to achieve
certain level of prediction accuracy for each transfer learning
method. The x-axis represents the mean absolute percentage
error (MAPE) [9], [11], [21] of the performance prediction
model, and the y-axis represents the number of samples from
the target environment.

While the existing methods require many samples to mini-
mize the prediction error, ChimeraTL can reduce the error to
below 40% with just 10 samples. This result demonstrates
the effectiveness of ChimeraTL’s aim to linearly transform
and reuse the source data for the target model construction.
ChimeraTL further reduces the prediction error to under 10%
with 80 samples, while other methods require at least 150
samples to achieve the same accuracy. ChimeraTL’s steady
improvement in prediction accuracy with an increased number
of samples justifies its strategy to prioritize sampling for
machine-specific parameters once enough samples are col-
lected for linear transformation learning. With ChimeraTL
achieving the best prediction accuracy for all the number of
samples, it is clear that ChimeraTL can build an accurate
performance prediction model with fewer samples from the
target environment.

Contrary to the findings of the previous work that Mod-
elShift needs less than 10 samples to learn the linear transfor-
mation [11], ModelShift requires 80 samples to achieve its best
prediction accuracy of just around 40% in our experiments.



70 60 50 40 30 20 10 5
Mean Absolute Percentage Error (%)
0

50
100
150
200
250
300
350
400

Sa
m

pl
e 

Si
ze

(1
 sa

m
pl

e 
= 

15
 se

c)

Proposed Method
ModelShift

L2S
DataReuseTL

L2S+DataReuseTL

Fig. 4: Performance prediction accuracy of trans-
fer learning methods – ModelShift, DataReuseTL, and
L2S+DataReuseTL cannot reduce the error below 40% even
with all the samples from the target environment.

70 60 50 40 30 20 10 5
Mean Absolute Percentage Error (%)
0

50
100
150
200
250
300
350
400

Sa
m

pl
e 

Si
ze

(1
 sa

m
pl

e 
= 

15
 se

c)

Proposed Method ToyChimera

Fig. 5: Performance prediction accuracy of ChimeraTL
and ToyChimera

This is because there are machine-specific parameters in Lin-
eairDB that interfere with learning the linear transformation.
DataReuseTL and L2S+DataReuseTL display improvement
in prediction accuracy, but their prediction accuracy never
reaches below 40% even with all available samples from the
target environment because there is a huge difference between
the DBMS performance in the source and target environments.
Even though ChimeraTL linearly transforms the source data
and reuses it for the target model construction, the effect of
negative transfer is minimized because ChimeraTL excludes
the source data of machine-specific parameters in the process.

In contrast to the methods that suffer from the negative
transfer, L2S shows a steady improvement in prediction accu-
racy as the number of samples increases. Still, L2S generally
requires twice as many samples as ChimeraTL to achieve the
same prediction accuracy. Since L2S does not use the source
environment data at all to train the model, it requires more
samples from the target environment to build a model with
the same accuracy as ChimeraTL.

D. Importance of Parameter Separation

To understand the effect of parameter separation, we com-
pare ChimeraTL with ToyChimera, a variant of ChimeraTL
that does not exclude the data of machine-specific parameters
from the linear transformation learning and the source data
reuse, and samples data randomly instead of giving priority to
specific parameters at different stages of the sampling process.

As shown in Fig. 5, ToyChimera needs much more samples
than ChimeraTL does to learn an accurate model. ToyChimera
requires 400 samples to reduce the error to below 5% when
ChimeraTL can achieve the same accuracy in just 150 samples.

As explained in Section IV-C and shown in Fig. 4, involv-
ing machine-specific parameters in the linear transformation
learning and reusing all the source data cause negative transfer
that significantly degrades the prediction accuracy. ChimeraTL
filters out the data of machine-specific parameters for these
processes to reuse the source data without suffering from the
negative transfer. Consequently, ChimeraTL can build a more

accurate performance prediction model with fewer samples
from the target environment.

V. RELATED WORK

Although performance prediction models are commonly
used to recommend optimal configurations for dynamic work-
loads [1], [3], [4], [6], few studies, like ResTune [7], leverage
knowledge from different hardware environments to build a
model. ResTune employs meta-learning to combine models
from multiple environments. Its main concern is not on the
accuracy itself but on finding optimal configurations for a new
workload, which differs from ChimeraTL’s focus on accuracy.

Several research efforts in transfer learning [11], [12]
have aimed to learn models on new hardware environments
efficiently. They showed that software performance in one
environment strongly correlates with that in another. Some
work [9], [12] found that impactful parameters are likely
to be shared between the source and target environments.
These results were obtained on configurable systems with
binary parameters, and it was unclear if their approaches were
applicable to DBMS with non-binary parameters.

In this paper, we found that some parameters in DBMS are
universal and can be transformed linearly, but others are not.
The difference limited the performance of existing transfer
learning techniques that assumed a strong linear relationship
between the source and target environments [10], [11].

VI. CONCLUSION

While some parameters in DBMS have similar effects on
performance across different hardware environments, others
can have varying effects that depend on underlying hardware
limitations. Previous studies do not leverage this information
to improve the effectiveness of transfer learning. We proposed
ChimeraTL, a novel method that accounts for different param-
eter types to enhance transfer learning in DBMS. We adopted
a novel parameter separation technique which allowed us to
employ different transfer learning methods for each group of
parameters. Our experiments demonstrated that ChimeraTL
needs only 50% of samples that state-of-the-art methods
require to minimize the prediction error to under 10%.



REFERENCES

[1] X. Zhang, Z. Chang, Y. Li, H. Wu, J. Tan, F. Li, and B. Cui, “Facilitating
database tuning with hyper-parameter optimization: A comprehensive
experimental evaluation,” Proc. VLDB Endow., 2022.

[2] K. Kanellis, R. Alagappan, and S. Venkataraman, “Too many knobs to
tune? towards faster database tuning by pre-selecting important knobs,”
in Proc. HotStorage’20, 2020.

[3] J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao, B. Cheng, J. Xing, Y. Wang,
T. Cheng, L. Liu, M. Ran, and Z. Li, “An end-to-end automatic cloud
database tuning system using deep reinforcement learning,” in Proc.
SIGMOD, 2019.

[4] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang, “Automatic
database management system tuning through large-scale machine learn-
ing,” in Proc. SIGMOD, 2017.

[5] S. Duan, V. Thummala, and S. Babu, “Tuning database configuration
parameters with ituned,” Proc. VLDB Endow., 2009.

[6] X. Zhang, H. Wu, Y. Li, J. Tan, F. Li, and B. Cui, “Towards dynamic
and safe configuration tuning for cloud databases,” in Proc. SIGMOD,
2022.

[7] X. Zhang, H. Wu, Z. Chang, S. Jin, J. Tan, F. Li, T. Zhang, and B. Cui,
“Restune: Resource oriented tuning boosted by meta-learning for cloud
databases,” in Proc. SIGMOD, 2021.

[8] S. Matsuura and T. Miyazaki, “Real-world challenges of ml-based
database auto-tuning,” in Proc. PACMI, 2022.

[9] P. Jamshidi, M. Velez, C. Kästner, and N. Siegmund, “Learning to
sample: Exploiting similarities across environments to learn performance
models for configurable systems,” in Proc. ESEC/FSE, 2018.

[10] P. Jamshidi, M. Velez, C. Kästner, N. Siegmund, and P. Kawthekar,
“Transfer learning for improving model predictions in highly config-
urable software,” in Proc. SEAMS, 2017.

[11] P. Valov, J.-C. Petkovich, J. Guo, S. Fischmeister, and K. Czarnecki,
“Transferring performance prediction models across different hardware
platforms,” in Proc. ICPE, 2017.

[12] P. Jamshidi, N. Siegmund, M. Velez, C. Kästner, A. Patel, and Y. Agar-
wal, “Transfer learning for performance modeling of configurable sys-
tems: An exploratory analysis,” in Proc. ASE, 2017.

[13] Oracle, “Reference manual, ver. 8.0, sec. 15.14, innodb
startup options and system variables,” 2023. [Online]. Available:
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html

[14] GitHub, “Lineairdb/lineairdb,” 2023. [Online]. Available:
https://github.com/LineairDB/LineairDB

[15] R. R. Hocking, “A biometrics invited paper. the analysis and selection
of variables in linear regression,” Biometrics, 1976.

[16] A. Bhattacharyya, “On a measure of divergence between two statistical
populations defined by their probability distributions,” Bulletin of the
Calcutta Mathematical Society, 1943.

[17] G. Marsaglia, W. W. Tsang, and J. Wang, “Evaluating kolmogorov’s
distribution,” Journal of Statistical Software, 2003.

[18] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT
Press, 2005.

[19] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden, “Speedy
Transactions in Multicore In-Memory Databases,” in Proc. SOSP, 2013.

[20] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proc. SoCC, 2010.

[21] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast
accuracy,” International Journal of Forecasting, 2006.


