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Abstract—Tables in the wild are usually not relationalized,
making querying them difficult. To relationalize tables, recent
works designed seven transformation operators, and deep neural
networks were adopted to automatically find the sequence of
operators, achieving an accuracy of 57.0%. In comparison,
earlier versions of large language models like GPT-3.5 only
reached 13.1%. However, these results were obtained using naive
prompts. Furthermore, GPT-4 is recently available, which is
substantially larger and more performant. This study examines
how the selection of models, specifically GPT-3.5 and GPT-4, and
various prompting strategies, such as Chain-of-Thought and task
decomposition, affect accuracy. The main finding is that GPT-
4, combined with Task Decomposition and Chain-of-Thought,
attains a remarkable accuracy of 74.6%. Further analysis of
errors made by GPT-4 shows that the challenges that about half
of the errors are not due to the model’s shortcomings, but rather
to ambiguities in the benchmarks. When these benchmarks are
disambiguated, GPT-4’s accuracy improves to 86.9%.

I. INTRODUCTION

In relational databases, standard relational tables have
rows representing entities and columns representing attributes.
But this standard format doesn’t always apply to real-world
data. For example, data might include years like ”2013”,
”2014”, and ”2015” as columns, or cells containing lists
that violate the first normal form. To address this, recent
works [Li et al.(2023)] propose seven operators to transform
these tables into the relational format, as illustrated in Figure 1.

To automatically generate a list of operators to relationalize
tables, [Li et al.(2023)] exploits visual patterns, similar to
how humans identify row and column patterns, to predict
the right operators. Their approach involves Deep Neural
Networks (DNN) inspired by computer vision, achieving a
57.0% accuracy rate. In comparison, earlier versions of Large
Language Models (LLMs) like GPT-3.5, even with a few-shot
in-context learning, only reach an accuracy of 13.1%.

Although Li et al.’s method showed higher accuracy
than GPT-3.5, it is arguably difficult to continuously im-
prove and maintain a custom DNN pipeline as compared
to designing logic that benefits from the modern LLM
ecosystem that is evolving on a daily basis. Two recent
LLM advancements could change this comparison. Firstly,
the introduction of GPT-4, which has orders of magni-
tude more parameters and is multimodal, could poten-
tially recognize visual patterns inside tables better. Sec-
ondly, recent works have explored different strategies to

prompt LLMs, like decomposing a complex task into sim-
ple ones [Khot et al.(2022)], [Pourreza and Rafiei(2023)], or
using Chain-of-Thought (CoT) [Wei et al.(2022)] to let LLMs
first reason about the task. These methods have significantly
improved LLM performance but weren’t used by Li et al.

This paper revisits table relationalization using the latest
LLM architectures (GPT-4), and prompting strategies (decom-
position and CoT). Our key finding is that these techniques
achieve a remarkable 74.6% accuracy in relationalizing tables,
showing great promise. Additionally, an analysis of the 25.4%
errors made by GPT-4 revealed that about half were not due
to the model’s mistakes, but rather because of the ambiguities
in the benchmarks. We therefore contribute to the relation-
alization benchmarks by adding alternative answers. After
we disambiguate the benchmarks1, GPT-4 with prompting
strategies achieves the accuracy of 86.9%. We conclude with a
proposed architecture of LLM-driven transformation systems.

II. APPROACH OVERVIEW

We define the problem and discuss the prompting strategies.

A. Problem Definition

We study the problem from [Li et al.(2023)]. Given 7 trans-
formation operators illustrated in Figure 1, with parameters:
• Transpose, Subtitle: No parameters.
• Pivot: row_frequency for how many rows to Pivot.
• Ffill: end_idx for the ending column index to Ffill.
• Explode: column_idx for the column index to Explode.
• Stack, Wide to long: start_idx and end_idx for the

starting and ending column index of the columns to collapse.
The problem is then defined as:

Problem 1. Given an input table T and the seven operators,
the task is to construct a list M = [o1(p1), o2(p2), . . .], where
oi represents an operator and pi denotes its parameters for
each index i in the range 1 ≤ i ≤ k. This list of parameterized
operators M , when applied sequentially to T , should transform
T into a relational table.

B. Prompting Strategies

To solve Problem 1, we explore different prompting strategies.

1The disambiguated benchmarks can be found in https://github.com/
zachary62/auto table correction/
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Fig. 1: Seven types of transformations to relationalize tables. (1) Pivot: Turns key-value pairs into a table, with keys as column
headers and their corresponding values as rows. (2) Transpose: Swaps the rows and columns of a table. (3) Subtitle: Move rows
of Subtitles as a new column. (4) Ffill: Copies the value from the cell above into any empty cell in a column. (5) Explode:
Splits cells that contain multiple entries into separate rows. (6) Stack: Combines homogeneous columns into one, Stacking rows
on top of each other. (7) Wide to long: Similar to Stack, but it splits complex homogeneous columns by different dimensions.

1) Single Large Prompt with Few-shot In-context Learning:
[Li et al.(2023)] use a single, large prompt and provide one

example for each of the seven operators, as demonstrated in the
example template in Figure 2. However, this prompt could be
challenging for LLMs to execute effectively: (1) The prompt
requires the LLM to generate a complete list for all seven
transformation operations in one go. This would be complex
because the LLM needs to not only comprehend each transfor-
mation operator and its parameters but also consider how each
step influences the parameters of subsequent transformations,
since earlier transformations can alter the column indices for
later ones. (2) Additionally, the prompt asks the LLM to
produce the output directly without allowing any reasoning
process. This complexity could be too overwhelming for
LLMs [Shi et al.(2023)], [Liu et al.(2023)].

2) Task Decomposition: To manage the complexity of the
task, we exploit the relationships among the transformation
operators. We observe that in real-world transformation pro-
cesses, like those in data wrangling tools [Integrate.io(2023)],
[Kandel et al.(2011)] and Kaggle [EHR(2023)], [End(2020)],
[Int(2021)], [Name(2019)], people often start with opera-
tors that modify the table structure that changes the en-
tire table shape. Following that, modifications are made to
columns or rows, and finally individual cells. Taking inspira-
tion from this, we decompose Problem 1 into a list of sub-
problems[Khot et al.(2022)], [Pourreza and Rafiei(2023)]:

Task: Predict transformation operators for table.
=========
Operator descriptions:
- {\it Stack}: collapse homogeneous cols into rows.
@param (int): start_idx:
zero-based starting column index of the column-group.
@param (int): end_idx:
zero-based ending column index of the column-group.
... (the rest 6 operators)
=========
OUTPUT the transformations and parameters in JSON. E.g.,
[{"operator": "{\it Ffill}", "end_idx": 1},
{"operator": "{\it Stack}", "start_idx": 1, "end_idx": 5}].
No explanation is needed.
=========
Here are some example inputs and outputs
## Input
|id|date|items|
|1|2021-01-01|apple, banana, orange|
|2|2022-12-12|banana, carrot|
## Output
[{"operator": "{\it Explode}", "column_idx": 2}]
... (the rest 6 operators)
=========
Your task:
## Input:
(input_table_parsed_string)

## Output:

Fig. 2: Single large prompt with few-shot in-context learning,
as used by previous work, could be overwhelming.



• Structural Change of All Rows and Columns (Pivot,
Transpose): Both Pivot and Transpose modify the row-
column structure of the table to replace all column headers
with rows; such correction is the prerequisites to all other
operators. Additionally, these structural errors can’t arise
from other operators. Therefore, we start with two sub-
problems to evaluate these two operators.

• Structual Change of Subset of Rows and Columns
(Subtitle): After Pivot and Transpose, Subtitle turns extra
non-entity rows to columns, which is the prerequisite to the
remaining operators. Therefore, we solve Subtitle next.

• Column change (Stack, Wide to long - Shared Tasks):
Once the extra rows are eliminated, the next priority for the
rest operators is to make sure that the columns correctly
represent attributes. Stack and Wide to long are similar op-
erators in that both group homogeneous column headers into
column values, but they differ in the number of dimensions
of homogeneity (Stack for one dimension, Wide to long for
multiple). Therefore, we break this down into two tasks:
first, identify the homogeneous columns, and then determine
the number of dimensions in their homogeneity.

• Row and Cell Change (Ffill, Explode): Following the prior
steps, where column headers indicate attributes and rows
denote entities, we address issues at the cell level. We use
Ffill for missing values and Explode for lists within cells.
In summary, we break down Problem 1 into simpler sub-

problems, as shown in Figure 3, with each sub-problem
addressed by a single LLM call. After each sub-problem, we
execute Python code to apply the transformation to update
the table. This relieves the LLM from having to account
for how previous transformations might affect the indices of
subsequent columns in multi-step transformations.
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Fig. 3: Decomposed Workflow for Table Relationalization:
Each diamond represents a single call to LLM to determine
control flow. Each rectangle indicates a Python program that
applies the transformation.

3) CoT: Prior work [Wei et al.(2022)] suggests that allow-
ing LLMs to reason before producing an output can enhance
their performance. Following this approach, an example of
this template for the decomposed task of Pivot is shown in
Figure 4.

III. EXPERIMENTS

In this section, we report the experimental find-
ings using the table relationalization benchmark provided

Task: Decide if the table needs {\it Pivot}
=========
Example Table:
|Name|Alice|
|Age|17|
|Name|Bob|
|Age|19|

This table rows follow a pattern:
| Attribute Name | Attribute Value |
"Name" and "Age" should be column headers.
Thus, {\it Pivot}ing is needed every 2 row.
=========
Input Table:
(input_table_parsed_string)

1. Identify if the pattern exists in the rows.
2. If yes, count the attributes in each group.
=========
Now, return your answer in JSON:
{

"reasoning": "The rows mean ...",
"pattern_exist": true/false,
"number_of_attributes_per_group": integer

}

Fig. 4: Prompt for the decomposed sub-problem of Pivot with
in-context learning and CoT.

Method Acc (%)
Auto-Tables from [Li et al.(2023)] 57.0
Large Prompt (GPT-3.5) 13.1
Large Prompt + CoT (GPT-3.5) 8.2
Decomposed Prompts (GPT-3.5) 0
Decomposed Prompts + CoT (GPT-3.5) 3.2
Large Prompt (GPT-4) 46.3
Large Prompt + CoT (GPT-4) 39.3
Decomposed Prompts (GPT-4) 60.1
Decomposed Prompts + CoT (GPT-4) 74.6

TABLE I: Accuracy Across Different Models and Methods.

by [Li et al.(2023)]. This benchmark comprises 244 tests,
with each test including a dataset and one or more lists of
parameterized transformation operators as the ground truth.
We evaluate various combinations of prompting strategies as
follows:
• Large Prompt: Via correspondence, we receive the original

prompt from the authors of [Li et al.(2023)].
• Large Prompt + CoT: This uses the original prompt, but

additionally, we prompt the LLM first to provide reasoning.
• Decomposed Prompts: This follows our Task Decomposi-

tion method in Section II-B2, but we ask the LLM to directly
provide the JSON output without the ”reasoning” field.

• Decomposed Prompts + CoT: This uses the Task Decom-
position method and we instruct the LLM to provide the
reasoning as a part of the JSON output.
We use GPT-4 Turbo as the LLM, and accuracy as

the performance metric, which corresponds to Hit@1 in
[Li et al.(2023)].

A. Experiment Results

Table I presents the outcomes. The key insights are as follows:
• Notable Improvement with GPT-4 Over GPT-3.5: We

find that GPT-3.5 frequently mixes up rows and columns,



Category Count Percentage (%)
Transpose Ambiguity 3 1.2
Homogeneity Ambiguity 18 7.4
Explode Ambiguity 4 1.6
Explode + Homogeneity Ambiguity 4 1.6
Content Filtering 1 0.4
Mistake 32 13.1
Correct 182 74.6

TABLE II: Breakdown of Answer Categories

which corroborates [Li et al.(2023)]. Interestingly, the use
of prompting strategies decreases accuracy for GPT-3.5.
These strategies seem to prompt GPT-3.5 to generate longer
lists of operators despite the ground truth typically involving
no more than two operators. Switching from GPT-3.5 to
GPT-4 led to a notable accuracy increase (19.6% → 46.3%).
This underscores the importance of larger model sizes
in performance. Despite this progress, GPT-4 with Large
Prompts still falls short of the specialized Auto-Tables
model.

• Reduced Accuracy with CoT for Large Prompt: Sur-
prisingly, incorporating CoT with the large prompt actually
decreased GPT-4 accuracy (46.3% → 39.3%). Upon review-
ing the model’s reasoning, we observed that GPT-4 tends to
hallucinate when given a large prompt [Liu et al.(2023)]:
it generates incorrect assumptions about the input table,
leading to wrong outputs.

• Remarkable Improvement with Task Decomposition:
Breaking down the complex relationalization task into
smaller, manageable sub-problems allowed GPT-4 to per-
form more effectively. The accuracy of 60.1% even sur-
passes that of the specialized Auto-Tables model (57.0%).

• Boosted Accuracy Using CoT with Decomposed
Prompts: The combination of decomposed prompts and the
CoT technique significantly raised the accuracy (60.1% →
74.6%). Although CoT by itself didn’t enhance accuracy,
its integration with Task Decomposition allowed GPT-4 to
more effectively solve each simplified sub-problem.

B. Error Analysis

While GPT-4, combined with Task Decomposition and CoT,
achieves a promising accuracy of 74.6%, what are the nature
of the 25.4% errors? Thanks to CoT, the outputs from GPT-4
are interpretable, allowing for detailed manual inspections of
these errors.

Key Takeaways: (1) Of the 62 errors by GPT-4, 29 were
not due to the model’s inaccuracies but rather from ambigu-
ities in the relationalization benchmarks. (2) We contribute
to the benchmark by providing alternative answers to these
ambiguous queries. With disambiguations, GPT-4, combined
with prompting strategies, achieves an accuracy of 86.9%.

We next categorize the ambiguities and provide representa-
tive examples for each. The categories are in Table II:

1) Ambiguity in Transpose: Certain tables present a Pivot
view, leading to ambiguity in Transpose. In these cases, both
the table header and the first column could be considered

as attributes. For instance, Stack_48 table describes the
demographic statistics:

Unnamed: 0 Asian Black Hispanic ...
Brown 14% 6% 10% ...
Columbia 15% 8% 13% ...
Cornell 17% 6% 10% ...

The ground truth decided not to Transpose, while GPT-4 opted
to do so. However, in such scenarios, both choices could be
considered valid. The ambiguity lies in determining whether
the header or the first column represents the primary set of
attributes, making the decision to Transpose or not subjective.

2) Ambiguity in Homogeneity: From Task Decomposition,
identifying Homogeneous Column Groups is crucial for both
Stack and Wide to long operators. Yet, defining ’Homogene-
ity’ is often unclear. Generally, the ground truth views columns
with sequential patterns (e.g., ”2013”, ”2014”, ”2015”) or
obvious categories (e.g., ”red”, ”blue”, ”orange”) as homo-
geneous. However, there are instances where the classification
of homogeneity is debatable.
• Less Obvious Categories: Consider the Explode_14 ta-

ble: The columns ”Heat”, ”Drought”, ”Shade”, and ”Flood”

Species Heat Drought Shade Flood ...
Annual ryegrass 1 1 3 3 ...
Barley 0 3 2 1 ...
Oats 1 1 1 2 ...
Cereal rye 1 3 3 2 ...

could be seen as various categories related to crop con-
ditions. GPT-4 classifies them as homogeneous for Stack,
while the ground truth doesn’t.

• Small Column Group: For example, for the Explode_45
table: The columns ”Win” and ”Loss” can be considered as

Teams Win Loss ...
Boston Celtics 17 4 ...
Minneapolis/Los Angeles Lakers 16 15 ...

different categories of game results. While GPT-4 opts to
Stack them, the ground truth does not. Generally, the ground
truth doesn’t Stack small groups of only two columns, while
GPT-4 does.
3) Ambiguity in Explode: The basic principle of the first

normal form in database design involves ensuring that each
cell contains a single atomic value. The Explode operator is
used to map one row to multiple rows, implying a ”one-to-
many” relationship. However, there are instances where cells
with multiple values do not semantically represent a ”one-to-
many” mapping, and thus, using the ’Explode’ operator might
not be appropriate:
• Single Value with Multiple Components: For
Explode_32: Although the ”Name” column has multiple

Name Population ...
Carroll Gardens, Columbia Street, Red Hook 38327 ...
Battery Park City, Lower Manhattan 20088 ...



values separated by commas, they represent different parts
of a single address in a geographical hierarchy. Splitting
these into multiple rows using the Explode might not
make sense semantically. Originally, each row indicates the
population of the most specific location, but if Exploded, it
could be wrongly interpreted as representing populations at
various levels of granularity. In this case, the ground truth
opts for explosion while GPT-4 does not. A more suitable
method might be to introduce a new operator that expands
these cell values into multiple columns rather than rows.

• Single Value with Synonyms: Consider Explode_10:
While the ”OCCUPATION” field includes multiple values

OCCUPATION ALL PHONE EMAIL ...
Driver/Bus Driver 21043 13480 6142 ...
Broker/Stock/Trader 1461924 885050 536957 ...

separated by slashes, they likely represent a single oc-
cupation, inferred from the semantic similarity of these
occupations, but is ”also known as” various synonyms. This
does not necessarily suggest a ”one-to-many” relationship
between a person and occupations. In this case, GPT-4 opted
not to use the Explode, whereas the ground truth did.
4) Content Filtering: Finally, one test (Subtitle_21)

failed due to content filtering. Its input table contains al-
bum titles with humanity-threatening themes (e.g., ”Animals
Killing People - Human Hunting Season”); the server denies
the request as a measure of AI safety.

In summary, as shown in Table II, out of 244 test cases,
only 32 (13.1%) are clear errors committed by GPT-4. Ap-
proximately half of these errors arise from ambiguities: In
26 cases (10.7%), GPT-4 differs due to ambiguities in either
the Explode function, Homogeneity, or both. Additionally,
3 errors (1.2%) are attributed solely to ambiguity in the
Transpose function. Our manual evaluation finds that GPT-4’s
answers in these ambiguous scenarios are also reasonable. We
disambiguate the benchmarks by providing alternative answers
and GPT-4’s accuracy improves to 86.9%.

IV. CONCLUSION

We investigated how different models (GPT-3.5 and GPT-4)
and prompting strategies (CoT and Task Decomposition) affect
the accuracy of table relationalization tasks. Our findings show
that GPT-4, combined with Task Decomposition and Chain of
Thought, achieves a remarkable accuracy of 74.6%. However,
upon examining the errors, we discovered that approximately
half of them are due to ambiguities in the benchmark itself,
rather than the model’s limitations. By resolving these ambi-
guities, the accuracy of GPT-4 improves to 86.9%.

While LLMs show significant promise in table relation-
alization, there is a need for more operators like column
split, and ambiguities are currently identified manually. In
future work, we plan to explore the architecture of LLM-
driven transformation systems with self-improving compo-
nents [Wang et al.(2023)]: LLMs will learn and enhance (1)
a library of operator functions, (2) a list of dependencies

between operators (e.g., prioritizing structural operators be-
fore others), and (3) a human-supervised and document-aided
prompt metadata system [Huang et al.(2023)] to help uncover
and resolve ambiguities.
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