
ReClean: Reinforcement Learning for Automated
Data Cleaning in ML Pipelines*
Mohamed Abdelaal*, Anil Bora Yayak†, Kai Klede†, Harald Schöning*

* Software AG, Darmstadt, Germany
† University of Erlangen-Nuremberg, Erlangen, Germany

* First.Last@softwareag.com, Abora.Yayak@gmail.com, kai.klede@fau.de

Abstract—Addressing data quality issues is a challenging task
due to the labor-intensive nature of manual data cleaning pro-
cesses and the inadequacy of automated tools that lack effective
repair strategies. In this paper, we introduce ReClean, a novel
automated data-cleaning method, dedicated to ML pipelines, that
employs reinforcement learning (RL) to optimize data-cleaning
tasks. ReClean treats data cleaning as a sequential decision
process, where RL agents learn to choose optimal data repair
operations that improve ML model convergence and predictive
performance. Our extensive experimental evaluation shows that
ReClean surpasses existing baseline methods, successfully deter-
mining and applying data repair tools to enhance downstream
predictive tasks automatically and without supervision.

I. INTRODUCTION

Data Quality Problems. Recently, Machine learning (ML)
algorithms have enabled diverse applications across multi-
ple domains, e.g., autonomous driving, healthcare, finance,
and robotics. Data quality plays a crucial role in such ML
applications, as the performance of ML models is directly
dependent on the data used to train those models. Poor or low-
quality data with issues such as missing values, duplicates,
inconsistencies, or inaccuracies can negatively impact the
ability of ML algorithms to learn meaningful patterns from
the training data [1]. This data discrepancy, in turn, affects
the generalization capabilities of the resulting ML models on
unseen data.

Challenges. Data wrangling, including data cleaning, trans-
formation, and enrichment, is the most time-consuming phase
of data science projects. Notably, the manual undertaking of
data cleaning can be fraught with challenges, consuming sig-
nificant time and being susceptible to errors. Particularly, the
identification and rectification of data quality issues demand
extensive human intervention, rendering it a labor-intensive
strategy, ill-suited for managing the scale, diversity, and pace
of data ubiquitously encountered. Therefore, multiple aca-
demic and commercial (semi-) automated tools for detecting
and repairing data errors have been developed, e.g., RAHA
[13], SAGED [3], OpenRefine and Trifacta [17], and AutoCure
[2]. While these tools demonstrate proficient performance in
identifying instances of erroneous data, their deficiency lies in
the absence of repair strategies for such errors.

The indiscriminate removal of entire tuples as a remedy
may prove unsatisfactory, as these tuples might encapsulate

This work was supported (in part) by the Federal Ministry of Education
and Research through grants 02L19C155, 01IS21021A (ITEA project number
20219).

pivotal information. An alternative approach involves the gen-
eration of appropriate repair values to replace the erroneous
instances. However, existing repair tools, e.g., BARAN [13]
and HoloClean [19], typically operate independently of the
downstream ML tasks, leading to negative impacts on the
predictive performance. Moreover, the identification of well-
suited repair values is contingent upon multiple factors, en-
compassing dataset integrity and interdependencies among
tuples and columns. Conceiving the pursuit of generating
well-suited repair values as a supervised problem introduces
challenges in the labeling process, marked by its protracted
temporal demands or even infeasibility.

Recently, several ML-oriented tools have emerged, focusing
on data quality improvement for ML models, e.g., DiffML [8],
DiffPrep [11], Learn2Clean [4], and CPClean [10]. For in-
stance, DiffML formulates data engineering steps in a dif-
ferentiable way such that the entire pipeline can be trained
using backpropagation. However, these tools usually have
limitations. They can be computationally complex, may only
work with specific ML models, or lack a mechanism for
selecting the best data-cleaning tools for deployment in pro-
duction environments. Addressing these issues is crucial for
the practical application of ML, as it would enable more
automated and effective data quality management in diverse
settings.

Proposed Solution. To address these challenges, we
present, in this paper, a novel automated data cleaning method
for tabular data based on reinforcement learning (RL), denoted
as ReClean. Specifically, ReClean formulates data cleaning
as a sequential decision process whereby RL agents learn
to select optimal repair operations based on their effects on
ML model convergence. Specifically, RL agents choose among
available data repair tools or tool combinations that maximize
predictive utility for the target application, as measured by
evaluation metrics such as AUC or R2. An RL agent is
trained to sequentially select actions that maximize cumulative
reward over an episode of cleaning/prediction steps. A variety
of common data repair techniques are implemented as the
action space, like imputation of missing values, smoothing of
outliers, encoding of textual fields, etc. The agent combines
experience replay with the Reinforce algorithm [24] to learn
stochastic repair policies in an off-policy manner without exact
environment definitions. Through iterative interactions with
cleaned data, RL implicitly discovers repair strategies tailored
to specific error patterns without direct supervision. This joint
optimization of data cleaning and ML prediction distinguishes

ReClean from prior unidirectional methods.
To sum up, the paper provides the following contribu-

tions: (1) We introduce a novel data-cleaning method for
ML pipelines that automatically determines the well-suited
repair tools without human intervention. (2) We formulate
the problem of selecting the most suited data cleaning tools
as a sequential decision process which can be solved by the
Reinforce algorithm. (3) We conduct extensive experimental
evaluation, comparing the performance of ReClean against a
broad range of baseline methods on standardized benchmarks.
The evaluation demonstrates ReClean can appropriately de-
termine suited data repair techniques to improve downstream
predictive task outcomes in an automatic, unsupervised man-
ner. To the best of our knowledge, ReClean is the first method
that effectively leverages RL agents to select and combine data
repair tools, to enhance downstream ML task performance.

II. OVERVIEW
In this section, we introduce the architecture of ReClean,

depicted in Figure 1. Let’s define the dirty dataset as Dd =
(xi, yi) | i ∈ {1, 2, ..., N} ∼ P , where xi symbolizes a feature
vector residing in the feature space, denoted as X , while yi
signifies the corresponding label to xi within the label space,
represented as Y . When an ML-based error detection method
(e.g., [16] and [7]), denoted as E , is applied to the dirty dataset
Dd, it generates a detection dictionary, dt. This dictionary dt
includes tuples of row and column indices s, t that pinpoint
the locations of data errors within the dataset. Subsequently,
ReClean generates a set of feature vectors, Vd

i | i ∈ RN ,
each of which corresponds to an individual sample in Dd.
To this end, ReClean leverages a TF-IDF (Term Frequency-
Inverse Document Frequency) weighting method [21] at the
character level. This character-level analysis broadly captures
the relative importance of characters within the context of the
dataset, thereby enhancing the repair tool selection process.

The repair process begins with randomly sampling a data
batch Db =

(
xb
i , y

b
i

)
| i ∈ {1, 2, ...,M} from the dirty dataset

Dd, accompanied by its associated feature vectors Vb
i | i ∈

RM . Utilizing the indices in the detection dictionary dt, the
data errors are assigned to null values. ReClean embodies a
meta-learning framework that enables the concurrent training
of two distinct, yet learnable functions: (1) the target task
predictor model, denoted as fθ, and (2) the cleaner selector
model, represented as hϕ. The predictor model, formulated
as fθ : X → Y , is designed to minimize a specific loss
function, Lf . This could assume the form of cross-entropy for
classification tasks, or Mean Squared Error (MSE) for regres-
sion tasks, operating on the cleaned batch Dc. As depicted in
Equation 1, the function fθ constitutes any trainable function
with parameters θ, e.g., a neural network.

fθ = argmin
f̂∈F

1

M

M∑
i=1

Lf

(
f̂(xhϕ(Vi)), yhϕ(Vi)

)
(1)

The cleaner selector function hϕ, modeled as a deep neural
network, is optimized to output weights that can be leveraged
to automatically select a cleaner for the dirty samples within
Db

i . Accordingly, the cleaner selection module can choose

one or multiple cleaners, from the cleaner inventory, denoted
as C, to repair the data batch Db. In this case, the notation
(xhϕ(Vi), yhϕ(Vi)) symbolizes the cleaner selected for sample
i, pertinent to the feature vector Vi. This cleaner is then
applied to the training sample ((xi, yi)), resulting in a cleaned
version of the sample. After the cleaned batch Dc is obtained
by applying the selected cleaners on erroneous samples, it
is used to train the predictor model fθ. The corresponding
optimization problem can be formulated as:

min
hϕ

E(xv,yv)∼P t [Lh(fθ(x
v), yv)]

s.t. fθ = argmin
f̂∈F

E(x,y)∼P

[
Lf

(
f̂(xhϕ(V)), yhϕ(V)

)]
.

(2)

The cleaner selector model is also a trainable function, e.g.
neural network. Lh can also be a loss function such as MSE
or cross-entropy depending on the target task. Lastly, it is
assumed that a clean validation dataset, designated as Dv =
(xv

i , y
v
i) | i ∈ {1, 2, ...,K} ∼ Pt, is available and is derived

from a target distribution Pt (cf. Section III-C). In the next
section, we elaborate on the process of selecting the best repair
tools, which enhance the performance of the target models.

III. AUTOMATED REPAIR TOOL SELECTION

While the process of selecting sample-wise cleaners can
be theoretically framed as a supervised classification task, the
practical execution of this task is fraught with complications.
Specifically, it proves hardly possible to ascertain the definitive
ground truth labels (i.e., cleaners) for the erroneous samples.
The lack of such labels results in a non-differentiable loss
function, rendering gradient descent-based optimization meth-
ods unsuitable for these challenges. Despite the existence of
several strategies designed to circumvent the obstacle of non-
differentiable optimization [9], [20], the scope of ReClean is
focused on the application of RL for the selection of well-
suited cleaners in the presence of dirty samples within datasets.
The utilization of policy gradients allows the execution of
gradient-based optimization on non-differentiable losses. As a
result, policy gradients can be effectively applied to supervised
learning tasks, provided they are appropriately framed as RL
problems. To optimize these policy gradients, the Reinforce
algorithm [25] is employed in conjunction with the rewards
garnered from a validation dataset indicative of performance
on the target task. Therefore, the policy gradients correspond-
ing to the selected actions are weighted by the rewards that
these actions generate.
A. MDP Formulation

In ReClean, we define a “state” Si as a batch of feature
vectors (Vd

i) | i ∈ RM . These vectors correspond to the
instances in a dirty batch Db, which has been identified by an
error detection algorithm E . Consequently, a state encompasses
multiple dirty samples that need to be cleaned simultaneously.
The policy, denoted by π and represented by an agent, is
responsible for selecting an action (i.e., a cleaner) Ai for
a given feature vector. The reward Ri is derived from the
predictor model’s performance on a clean validation dataset,

Dirty Dataset TF-IDF
Featurization

Random
Sampling

Moving Average of
Rewards

Validation Set

Reward

6

Reinforcement Signal

ML-Based Error
Detection

1

Target Predictor

Cleaner Selection
Module

Data Batch

Features
Loss

7 8

Cleaned Batch

4
3

2

9

Detections

Selected Cleaners 5

Fig. 1: Architecture of ReClean. In each iteration j ∈ {i, · · · , No}, the cleaner selection module chooses a different set of
cleaners (shown in green) to increase the reward and optimize the target model. The threshold βexp is defined to achieve a
balance between exploration and exploitation.

symbolized by Lh. The reward is equivalent to the validation
loss or a loss-related evaluation metric. Our model operates in
episodes, with each episode concluding when all samples in
a dirty batch have been cleaned by the cleaners selected by
the cleaner selector network. In this particular context, each
episode lasts merely a one-time step, making the process effi-
cient and expedient. ReClean actively promotes the exploration
of the cleaner selector (i.e., the policy) in the direction of the
optimal solution for Equation 3. Such an equation defines the
loss function l̂(ϕ) of the cleaner selector network under the
target distribution P t and the policy πϕ(V):

l̂(ϕ) = E(xv,yv)∼P t

[
Eπϕ(V)[Lh(fθ(x

v), yv)]
]

=

∫
P t(xv)

[∑
V

πϕ(V) · [Lh(fθ(x
v), yv)]

]
dxv

(3)

We can then compute the gradient ∇ϕ l̂(ϕ) as:

∇ϕ l̂(ϕ) =

∫
P t(xv)

[∑
V

∇ϕπϕ(V) · [Lh(fθ(x
v), yv)]

]
dxv

=

∫
P t(xv)

[∑
V

∇ϕ log(πϕ(V) · πϕ(V) · [Lh(fθ(x
v), yv)]

]
dxv

= E(xv,yv)∼P t

[
Eπϕ(V)[Lh(fθ(x

v), yv)] · ∇ϕ log(πϕ(V))
]

(4)
where ∇ϕ log(πϕ(V)) is

∇ϕ log(πϕ(V)) = −∇ϕ

N∑
i=1

log (hϕ(Vi))

= −
N∑
i=1

log (hϕ(Vi))
hϕ(Vi)

(5)

B. Cleaner Selection Module

The cleaner selection module is implemented as a deep
neural network, specifically tailored to yield the index of an
appropriate repair tool for each instance of dirty data. This sys-
tem is constructed as a four-layer feed-forward neural network,
incorporating the Rectified Linear Unit (ReLU) activation
function for non-linearity. The quantity of hidden units within
this network is modulated according to the dimensionality of

the feature vectors, thereby maintaining an optimal balance
between complexity and performance. The network ingests a
collection of feature vectors as input, and generates, as output,
the index of a suitable repair tool for each corresponding dirty
data sample. For instance, assume a batch of dirty data. The
first row of this batch may be repaired utilizing the repair tool
designated by the index R1, while the second row’s anomalies
might be more suitably addressed by the tool indexed as R2.

The next essential step is to present the mechanism by which
the reward and loss functions are employed to update the
cleaner selection module. In particular, the loss function serves
the purpose of modulating the weights within the cleaner
selection module. This module’s output is represented as
ypred = [pi,j] | i ∈ RM , j ∈ RK , in which M and K indicate
the number of data samples per batch and the number of
available repair tools, respectively. In this context, the notation
pij denotes the probability that a specific data sample (xi, yi)
is processed using the repair tool cj . Considering that the
ground truth labels corresponding to the predictions produced
by the cleaner selection module are not readily available,
ReClean leverages the Reinforce algorithm to facilitate an
optimization process for the cleaner selection module.

In detail, the reward signal, which originates from the target
predictor, is utilized to compute the loss estimate for the
cleaner selection module. Subsequently, this estimated loss and
its corresponding gradient are employed to adjust the weights
within the cleaner selection module. In our implementation,
the reward, denoted as R, is calculated as the difference
between the current loss Lh (fθ(x

v), yv)–derived from a
validation set–and the moving average of previous losses,
designated LmovAvg . In this context, xv and yv represent the
validation set, whereas f(.) embodies the prediction function
of the target predictor. During the training process, we use a
moving average of previous loss with a window size T as the
baseline (δ) to stabilize the reward function. Hence, actions
yielding an improvement over the average of the preceding T
losses will be more likely selected by the selection module.

Following the reward estimation, the loss for the cleaner
selection module is computed. During this estimation process,

striking an equilibrium between exploitation and exploration
emerges as a critical aspect. In general, exploration encap-
sulates the strategy of experimenting with novel actions to
gain additional information about the environment, whilst
exploitation pertains to the approach of implementing actions
deemed beneficial based on the agent’s existing knowledge.
In ReClean, the cleaner selection module can facilitate explo-
ration by selecting random repair tools or experimenting with
previously untested tools. In contrast, the module can engage
in exploitation by choosing the action, in this case, a repair
tool, that is associated with the highest expected reward. To
maintain a delicate balance between exploration and exploita-
tion, we introduce an exploration threshold, denoted as βexp.
This threshold represents a hyperparameter which determines
how much exploration is encouraged.

More specifically, ReClean adds a regularization term to
Equation 3 to encourage the model to explore different actions.
If the average probability of the selected actions is too close to
0 (i.e., underconfidence) or 1 (i.e., overconfidence), determined
by the threshold βexp, the loss of the cleaner selection module
is intentionally augmented. This increase in loss inclines the
cleaner selection module towards the exploration of new (i.e.,
unexplored) repair tools. Figure 2 presents the pseudocode
encapsulating the core mechanics of ReClean. The inputs
to ReClean encompass the batch size of the input data, the
cycle count for both the cleaner selection module and the
target model, the dirty dataset, the validation dataset, the
feature vectors, and the window size for the moving average
computation. During each iteration of the cleaner selection
module, a batch of dirty data is sampled (cf. line 4), followed
by the application of the selected repair tools to clean the
sampled data (cf. lines 5 and 6). After the data cleaning
process, the weights of the target predictor are updated (cf.
lines 7 and 8). The final step in the iteration involves updating
the weights of the cleaner selection module (cf. line 10).

C. Validation Set Extraction

ReClean incorporates a pivotal component, namely the
validation dataset, which serves a critical role in the estimation
of the reward signal. The first step in this process involves
the identification and isolation of erroneous data samples.
Once these errors have been detected, the input dataset Dd

is partitioned into two distinct subsets. The first of these is
referred to as the clean fraction, which is devoid of the detected
errors. The second component retains the label of the dirty
fraction, containing the previously identified errors. Once the
data has been appropriately segregated, ReClean employs a
random sampling strategy designed to extract data samples
from the clean fraction. These randomly sampled data points
collectively constitute the validation dataset.

The utility of this approach lies in its capacity to generate
a validation dataset irrespective of the nature or size of the
input dataset. Further, it achieves this without necessitating
any form of user intervention. This autonomous generation of
the validation set adds a layer of efficiency and convenience
to the data validation process. In essence, the creation of the

Require: Mini-batch size Bs, number of iterations for RL
agent NO, number of iterations for predictor NI , dirty
training dataset Dd, validation dataset Dv , feature vectors
Vd, moving average window T > 0

1: Initialize parameters ϕ, θ, moving average δ = 0
2: for j = 1, ..., NO do
3: Sample a mini-batch of samples from the dirty training

dataset and their corresponding feature vectors: Db =
(xi, yi)

Bs
i=1 and V b = (Vi)Bs

i=1

4: Output cleaners Ci = hϕ(V)
5: Apply cleaners on the samples of Db: Dc = (x̃i, ỹi)

Bs
i=1

6: for j = 1, ..., NI do
7: Update the parameters of the predictor network

θ ← θ − α
1

Bs

Bs∑
i=1

∇θLf (fθ(x̃i, ỹi))

8: Update the parameters of the cleaner selector

ϕ← ϕ− β
1

Bs

[
Bs∑
i=1

[Lh(fθ(x
v
i , y

v
i))− δ

]
∇θ log πϕ(Vb)

9: Update the moving average baseline: δ ← T−1
T δ +

1
LT

∑K
j=1[Lh(fθ(xj), yj)]

Fig. 2: Training algorithm of ReClean

validation dataset involves a systematic sequence of steps,
starting with error identification in the input data, followed
by the segregation of clean and dirty fractions, and finally,
the random sampling from the clean fraction. This robust
technique ensures the generation of a high-quality validation
dataset that can effectively gauge the reward signal.

D. Runtime Optimization

In this section, we shed light on an important implemen-
tation trick that has been incorporated into ReClean. This
trick has a profound impact on computational efficiency,
reducing the runtime drastically, from a several-hour operation
to a succinct process that can be completed within minutes,
contributing to the practicality and scalability of ReClean.
In machine learning, the term “epoch” typically refers to a
single complete traversal through the entire training dataset.
To compute the loss of our target model, it is necessary to train
the target predictor using data that has undergone the repair
process. This requirement suggests the need to run all repair
tools on every batch of data during each epoch. However, the
number of epochs can span anywhere from 2000 to 5000,
contingent on the characteristics of the dataset in question.
Therefore, the execution of all repair tools during each epoch
can significantly escalate the runtime of ReClean.

To tackle this challenge, the ReClean implementation trans-
forms the resource-intensive repair operation into a more
efficient assignment operation. Before initiating the training
phase, each repair tool generates a list of repaired datasets.
As the training proceeds, based on the repair tools selected
for each data batch, we substitute the dirty data samples with

their corresponding repaired versions, sourced from the pre-
generated repaired datasets. This strategic maneuver allows us
to bypass the need for executing the repair tools on every
batch during each epoch, thereby drastically reducing the
computational load and the runtime. Moreover, it provides
an efficient pathway to handle the repair operation without
compromising the accuracy of the cleaning process.

IV. PERFORMANCE EVALUATION

In this section, we present our evaluation of ReClean in
comparison to a set of baseline methods. Through a series of
experiments, we aim to address the following key questions:
(1) What is the number of repair tools employed by ReClean
while cleaning a dirty dataset? and (2) what is the accuracy of
ReClean compared to the baseline tools? (3) what is the impact
of increasing the error rate on ReClean and the compared
baselines? By addressing these questions, we shed light on
the effectiveness and potential advantages of ReClean over the
baseline tools in the context of error repair. We first describe
the setup of our evaluations, before discussing the results and
the lessons learned throughout this study.

A. Experimental Setup

We conducted multiple experiments employing a diverse
set of six real-world datasets that encompassed varying
data sizes and exhibited distinct error rates. These datasets
are Smart Factory [5], Breast Cancer Wisconsin Diagnostic
(WDBC) [23], Airfoil Self-Noise dataset (NASA) [22], Wine
Quality dataset [6], Combined Cycle Power Plant dataset
(CCPP) [18] and Retail Sales dataset [15]. Table I provides a
summary of the key characteristics of each dataset. It is worth
noting that such datasets are commonly encountered in the
domain of data cleaning and have been extensively used in
related literature. In ReClean, we synthesized errors on the
datasets with different error rates. To this end, we utilize a
Python library called error-generator.

TABLE I: Datasets used in the evaluation where the error types
are outliers (OT), missing values (MV), Gaussian noise (GN),
white noise (WN), and typos (TP); and the ML tasks are binary
classification (BC) and regression (R)

Data Set Rows Columns Error Types ML Task

Smart Factory 23645 19 MV, OT, GN BC

Nasa 1504 6 MV, OT, TP R

WDBC 460 11 MV, OT, WN BC

Wine 1300 11 MV, OT, GN R

CCPP 1600 5 MV, OT, TP R

Retail 1140 10 MV, OT, TP R

In our search for effective error detection, we evaluated
several state-of-the-art tools, including RAHA [13], ED2 [16],
Picket [12], and HoloClean [19]. Our analysis revealed that
ED2 consistently provided high detection recall and preci-
sion—averaging 99%—across various datasets. Consequently,
we integrated ED2 into our pipeline for accurate identification

of dirty samples. For error correction, we utilized a com-
bination of statistical and ML-based imputation tools. The
statistical methods included Mean and Median imputation,
which provide simple yet effective measures for handling
missing data. In terms of ML-based imputation, we employed
Expectation Maximization (EM), k-Nearest Neighbors (KNN),
Bayesian Ridge, and MissForest. These robust imputation
methods not only served to generate repair candidates in
our system but also served as baseline tools for compari-
son. To further enhance the comparative study, we utilize
different versions of the baseline methods, each with distinct
configurations of given parameters. For instance, The KNN
imputer is implemented in three configurations, differing in
the number of neighbors. The EM imputer is utilized in two
configurations with varying numbers of iterations signifying
50 and 100 iterations, respectively. The MissForest imputer is
implemented in three configurations, differing in the number
of trees in the forest parameter, indicating 50, 100, and 200
trees, respectively. The Mean, Median, and Bayesian Ridge
imputers do not have any configured parameters.

In our experimental setup, we configured the outer iteration
count (NO) to be 2000, and the moving average window (T)
was set to 10. The mini-batch size was chosen to be 80%
of the total dataset size, a common practice in RL problems
to enhance the stability of model training, as highlighted in
[14]. The remaining 20% of the dataset was allocated for
validation purposes. For the evaluation of our target model’s
performance, we utilize two distinct metrics: the Area Under
the Curve (AUC) and the Root Mean Square Error (RMSE).
All experiments have been repeated ten times, where the
means of the ten runs are reported. We run all the experiments
on an Ubuntu 20.04 LTS machine with 16 2.60 GHz cores and
64 GB memory.
B. Results

Figure 3 presents a comparison between the performance of
ReClean and the top-performing baseline tools across various
datasets. To ensure clarity, we have chosen to feature only the
leading baseline tool for each dataset within the figure1. A
closer examination of Figures 3a-3f reveals that the superior
baseline tool varies depending on the dataset in question. This
variability underscores the rationale behind ReClean, which
automatically selects and combines the most effective repair
tools tailored to the dataset at hand. Figure 3a shows the
distribution of the AUC scores of the target predictor, detailing
its performance at varying error rates within the Smart Factory
dataset. The figure shows that ReClean consistently outper-
forms the leading repair tool, i.e., EM-50, in terms of AUC
scores derived from the validation set (on average by circa
1%), signaling superior performance. This pattern suggests
that the repair tools, either selected or integrated by ReClean,
yield higher-quality data. Consequently, models trained on the
refined data demonstrate improved predictive capabilities when
compared to those trained on datasets processed by the best
single repair tool available.

1All results have been made publicly available in the project’s repository.

10 20 40 60 80
Error Rate (%)

6.80

6.85

6.90

6.95

7.00

7.05
AU

C
Sc

or
e

1e−1

EM-50
ReClean

(a) Smart Factory

10 20 40 60 80
Error Rate (%)

9.74

9.76

9.78

9.80

9.82

9.84

9.86

9.88

AU
C

Sc
or

e

1e−1

EM-50
ReClean

(b) WDBC

10 20 40 60 80
Error Rate (%)

5.15

5.20

5.25

5.30

5.35

5.40

RM
SE

 S
co

re

EM-100
ReClean

(c) Nasa

10 20 40 60 80
Error Rate (%)

4.4

4.6

4.8

5.0

5.2

5.4

5.6

RM
SE

 S
co

re

EM-50
ReClean

(d) CCPP

10 20 40 60 80
Error Rate (%)

5.86

5.88

5.90

5.92

5.94

5.96

5.98

6.00

RM
SE

 S
co

re

1e−1

BRidge
ReClean

(e) Wine

10 20 40 60 80
Error Rate (%)

0.4

0.6

0.8

1.0

1.2

1.4

RM
SE

 S
co

re

1e3

EM-100
ReClean

(f) Retail

Fig. 3: Performance of ReClean and the best baseline tools

Figure 3b compares the performance of the target predictor
trained on the WDBC dataset after repairs have been con-
ducted using both ReClean and the EM-50 repair tool, which
is identified as the best tool for this particular dataset. The
results demonstrate that ReClean’s repaired dataset enables
the predictor to achieve performance that is either comparable
with or slightly superior to that of the baseline, with an average
improvement of 0.16%. In Figures 3c and 3d, the performance
of ReClean on the NASA and CCPP datasets is quantified by
the reduction in Root Mean Square Error (RMSE) values. On
average, ReClean decreases the RMSE by 0.3% for the NASA
dataset and by 0.5% for the CCPP dataset. This improvement
is particularly notable as the error rate increases. Finally, for
the Wine and Retail datasets, Figures 3e and 3f demonstrate
the impact of ReClean on the accuracy of the predictor when
applied to the Wine and Retail datasets. The results show an
improvement in accuracy by 0.36% for the Wine dataset and
a substantial increase of 25.6% for the Retail dataset. These
figures underscore the efficacy of ReClean in refining the
prediction accuracy across different types of data.

To understand the reasons behind the superior performance
of ReClean compared to the best standalone repair tools,
Table II provides a summary of the number of repair tools
utilized by ReClean for various datasets at different error rates.
The table highlights that, depending on the error rate, ReClean
typically selects multiple tools, with the mean ranging from
1.9 to 4.4 across different datasets and error rates, suggesting
a tailored approach to error correction for each scenario. For
instance, in the Smart Factory dataset with a 10% error rate,
ReClean uses an average (mean) of 3.2 repair tools with a

standard deviation of 1.53. The tendency to employ a variety
of tools correlates with the enhanced performance metrics
observed in Figure 3. The bold numbers indicate the highest
average number of tools used for each dataset, which tend
to occur at the lowest error rate (10% for Smart Factory and
NASA, 20% for WDBC and Retail), suggesting a possible
trend where more tools may be applied at lower error rates
for certain datasets.
TABLE II: Number of repair tools employed by ReClean,
where “M” and “Std” denote the mean and standard deviation
of ten experiments and γ represents the error rate.

Smart Factory WDBC Nasa Wine CCPP Retail

γ(%) M Std M Std M Std M Std M Std M Std

10 3.2 1.53 3.1 1.51 2.9 1.49 4 1.94 3.2 1.3 4.1 1.3

20 2.6 1.01 3.5 1.20 2.7 1.26 2.8 0.6 2.7 1.00 4.4 1.11

40 2.5 0.92 2.7 1.00 2.7 0.9 2.4 0.91 3 1.18 3.6 1.35

60 2.3 0.78 2.3 0.9 2.6 1.04 1.9 0.83 3.1 1.60 4.3 0.91

80 2.7 0.9 2.1 0.53 2.6 0.74 1.9 0.94 3 1.18 3.5 0.80

V. CONCLUSION & FUTURE WORK

In this paper, we present ReClean, an innovative automated
data cleaning method for tabular datasets, eliminating the
need for manual configuration. ReClean leverages model-free
reinforcement learning to automatically select and integrate
appropriate repair tools for any given dataset. By formulat-
ing data cleaning as a label-free, sequential decision-making
task, ReClean showcases superior performance, consistently
surpassing traditional baseline methods in diverse scenarios.
Future directions involve the inclusion of other data engineer-
ing steps, such as feature selection and data augmentation.

REFERENCES

[1] Mohamed Abdelaal, Christian Hammacher, and Harald Schoening.
REIN: A Comprehensive Benchmark Framework for Data Cleaning
Methods in ML Pipelines. In 26th International Conference on Ex-
tending Database Technology (EDBT), March 2023.

[2] Mohamed Abdelaal, Rashmi Koparde, and Harald Schoening. Autocure:
Automated tabular data curation technique for ml pipelines. In Pro-
ceedings of the Sixth International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management in conjunction with
SIGMOD 2023, pages 1–11, 2023.

[3] Mohamed Abdelaal, Tim Ktitarev, Daniel Städtler, and Harald Schöning.
SAGED: Few-shot Meta Learning for Tabular Data Error Detection.
In 27th International Conference on Extending Database Technology
(EDBT), March 2024.

[4] Laure Berti-Equille. Learn2clean: Optimizing the sequence of tasks for
web data preparation. In The world wide web conference, pages 2580–
2586, 2019.

[5] Oliver Birgelen, Alexander; Niggemann. Smart factory: High storage
system data for energy optimization, 2018. accessed on January 2022.

[6] Dheeru ”Dua and Casey Graff. UCI machine learning repository, 2017.
[7] Alireza Heidari, Joshua McGrath, Ihab F Ilyas, and Theodoros Rekatsi-

nas. Holodetect: Few-shot learning for error detection. In Proceedings
of the 2019 International Conference on Management of Data, pages
829–846, 2019.

[8] Benjamin Hilprecht, Christian Hammacher, Eduardo S Reis, Mohamed
Abdelaal, and Carsten Binnig. Diffml: End-to-end differentiable ml
pipelines. In Proceedings of the Seventh Workshop on Data Management
for End-to-End Machine Learning, DEEM ’23, New York, NY, USA,
2023. Association for Computing Machinery.

[9] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization
with gumbel-softmax, 2016.

[10] Bojan Karlaš, Peng Li, Renzhi Wu, Nezihe Merve Gürel, Xu Chu,
and Ce Zhang. Nearest neighbor classifiers over incomplete infor-
mation: From certain answers to certain predictions. arXiv preprint
arXiv:2005.05117, 2020.

[11] Peng Li, Zhiyi Chen, Xu Chu, and Kexin Rong. Diffprep: Differentiable
data preprocessing pipeline search for learning over tabular data. Proc.
ACM Manag. Data, 1(2), jun 2023.

[12] Zifan Liu, Zhechun Zhou, and Theodoros Rekatsinas. Picket: Guarding
against corrupted data in tabular data during learning and inference.
arXiv preprint arXiv:2006.04730, 2020.

[13] Mohammad Mahdavi, Ziawasch Abedjan, Raul Castro Fernandez,
Samuel Madden, Mourad Ouzzani, Michael Stonebraker, and Nan Tang.
Raha: A configuration-free error detection system. In Proceedings of the
2019 International Conference on Management of Data, pages 865–882,
2019.

[14] Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team.
An empirical model of large-batch training. CoRR, abs/1812.06162,
2018.

[15] Tyler Morse. Online business sales 2017-2019, 2019.
[16] Felix Neutatz, Mohammad Mahdavi, and Ziawasch Abedjan. Ed2:

A case for active learning in error detection. In Proceedings of
the 28th ACM international conference on information and knowledge
management, pages 2249–2252, 2019.

[17] Dessislava Petrova-Antonova and Rumyana Tancheva. Data cleaning: A
case study with openrefine and trifacta wrangler. In Quality of Informa-
tion and Communications Technology: 13th International Conference,
QUATIC 2020, Faro, Portugal, September 9–11, 2020, Proceedings 13,
pages 32–40. Springer, 2020.

[18] Heysem Kaya Pınar Tüfekci. Wine quality data set, 2014.
[19] Theodoros Rekatsinas, Xu Chu, Ihab F Ilyas, and Christopher Ré.

Holoclean: Holistic data repairs with probabilistic inference. arXiv
preprint arXiv:1702.00820, 2017.

[20] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochas-
tic backpropagation and approximate inference in deep generative mod-
els, 2014.

[21] Thomas Roelleke and Jun Wang. TF-IDF Uncovered: A Study of The-
ories and Probabilities. In Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in information
retrieval, pages 435–442, 2008.

[22] D. Stuart Pope Thomas F. Brooks and Michael A. Marcolini. Nasa
airfoil self-noise dataset, 2014. accessed on January 2022.

[23] Olvi L. Mangasarian William H. Wolberg, W. Nick Street. Breast cancer
wisconsin (diagnostic) data set, 1992.

[24] Ronald J Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning, 8:229–256,
1992.

[25] Ronald J. Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Mach. Learn., 8(3–4):229–256,
may 1992.

