
Will Sharing Metadata Leak Privacy?
Danning Zhan

Web Information System
TU Delft

Rihan Hai
Web Information System

TU Delft

Abstract—In the dynamic field of data management and
machine learning, achieving a balance between effective data
use and privacy preservation is increasingly crucial. Federated
learning exemplifies this challenge by training machine learning
models on data distributed across isolated silos while adhering
to privacy regulations like GDPR. A key aspect of this process
involves sharing metadata, such as feature names, essential for
model accuracy. Yet, the privacy implications of this metadata
exchange have been largely unexplored.

This paper examines the potential privacy risks of communi-
cating detailed metadata in federated learning frameworks. While
metadata is critical for enhancing data utility and supporting
advanced analytics, we address the paradox that it might inad-
vertently lead to privacy violations. We focus on functional depen-
dencies (FDs) and relaxed functional dependencies (RFDs), which
are crucial metadata types in database design and data quality.
We aim to define data privacy formally and investigate how
sharing these dependencies affects privacy preservation, using
probabilistic methods and analytical discussions to understand
their impact.

Index Terms—Privacy, Relaxed Functional Dependencies

I. INTRODUCTION

The accumulation of data has heightened data privacy
concerns, prompting stricter enforcement of regulations such
as GDPR [24], HIPAA [5], IPA [2], and PIPL [3]. Data
collectors are mandated to ensure the confidentiality of their
amassed data, leading to the formation of data silos. De-
spite the potential insights from cross-silo data processing,
regulatory measures to safeguard data privacy hinder such
collaborations. Federated learning emerges as a viable data
processing approach that upholds privacy standards amidst
these constraints.

Federated learning involves training ML models using
data residing in isolated silos while preserving data privacy.
According to how the feature space and sample space are
partitioned among the data sources, federated learning can
be categorized as vertical federated learning (VFL) [15] and
horizontal federated learning (HFL) [26]. For VFL, data si-
los share overlapping data instances but disjointed attributes,
whereas for HFL, data silos share overlapping attributes with
different data instances. HFL typically operates under the
same or similar database schema among participants. This
paper focuses on the more complex scenario of VFL, where
participants with differing database schemas must exchange
metadata before model training.

Fig. 1 shows a fintech scenario involving two distinct
parties: party A is a bank, and party B is an e-commerce com-
pany. Each has accumulated distinct datasets about a common

Fig. 1. Vertical Federated Learning between a bank and a e-commerce
company.

population. This presupposes that the dataset originates from
a homogeneous population that is known. Recognizing the
value that data heterogeneity can bring to their analysis, both
entities might consider engaging in vertical federated learning
to process their data collaboratively. An essential preliminary
step in this process involves metadata exchange between the
parties to enhance mutual understanding of data, which is vital
to ensuring the utility of any downstream models.

Metadata, covering information about a dataset, such as
attribute name, range, and type, as well as constraints between
attributes, such as functional dependency (FD) and relaxed
functional dependencies (RFD) [6], [9], [13], [18], play a
crucial role in data processing tasks such as data cleaning
[7] and data integration [25]. Yet, the privacy implications
of metadata exchange, particularly functional and relaxed
dependencies, remain unexplored in VFL literature. This study
investigates the privacy impacts of sharing these dependencies,
comparing them to the situation where this information is
withheld. We concentrate on VFL due to the predominance of
FDs and RFDs identified within the data. VFL exhibits distinct
metadata dependencies among participants, contrasting with
HFL, where metadata are similar. Our analysis will leverage
communicated metadata to assess data privacy implications
quantitatively using probabilistic methods.

Contributions Our contributions are outlined as follows.

• We will provide a formal definition of privacy leakage in
the context of vertical federated learning.

• Using probabilistic methods, we will examine if sharing
various metadata types, including attribute names, do-
mains, functional dependencies, and relaxed functional
dependencies, could result in privacy leakage.

II. PRELIMINARIES

In this section, we will formally define concepts that we
will use throughout this work.

TABLE I
NOTATION DEFINITIONS

Notation Definition
Rreal The real relations
Rsyn Generated/Synthesized relations
A ⊂ R Subset of attributes of the relations
a ∈ A Any value a in the domain of attribute A
ti, ri, ui Tuple at index i, index being the row index
ti[A] Attribute A associated with the tuple i

d() Any valid metric (distance) function
θ Probability value

E() Expected value of random variable
Dy , Dom(Y) Domain of attribute Y

|.| Cardinality or Size of the set

TABLE II
EXAMPLES TABLE: EMPLOYEE

Name Age Department Salary
Alice 18 Sales 20000
Bob 22 Customer Service 25000

Charlie 22 Sales 27000
Danny 26 Management 35000

A. Functional Dependencies

Functional dependencies (FDs) are one of the most impor-
tant constraints in relational database design, e.g., normaliza-
tion [19]. A functional dependency X → Y specifies that
attributes Y depend on attributes X . We use the following
definition of functional dependency on relation R of party A
in Figure 1 [13]. If we consider the attributes X,Y ⊂ R such
that X → Y is a functional dependency if and only if ∀ tuples
t, r ∈ R, t[X] = r[X] =⇒ t[Y] = r[Y]. This means that for
any tuple in the relation of party A, the attribute X of party
A will allow us to determine the value for attribute Y. We can
define the same definitions for party B’s data if we consider
the data scenario of VFL in Figure 1.

Relaxed functional dependencies (RFDs) hold under less
constrained conditions than functional dependencies [9]. Be-
cause of the less-constrained definition of the dependencies,
this would imply that more functions and conditions can be
utilized for RFDs.

Example 2.1: TABLE II is an example table of employees
with four attributes: name, age, department, and salary. In
the example, we assume the attribute ‘name’ is unique. Two
possible functional dependencies are Name → Age and
Name → Salary. The table also shows relaxed functional
dependencies Name → Salary and Age → Salary.

B. Privacy Leakage

In the context of vertical federated learning, employing
an adjusted definition of privacy leakage that aligns more
closely with regulatory standards, particularly those outlined
in the GDPR [1], [5] is imperative. To effectively address
this requirement, we propose establishing a quantitatively
measurable definition of privacy leakage. This definition aims
to accurately assess the extent of data privacy breaches or
exposures that may occur within the framework of vertical

federated learning, ensuring compliance with GDPR mandates.
This approach adheres to regulatory prerequisites and provides
a standardized metric for evaluating privacy risks in a federated
learning environment.

Participating parties exchange dataset-related information in
the preliminary stage of model training within a vertical feder-
ated learning framework, specifically metadata that describes
the content of their respective data. This metadata exchange,
while necessary, poses a potential risk for privacy leakage.
Consider a scenario involving two parties, A and B. When
party A communicates its metadata with party B, there arises
a possibility that party B might use this metadata to construct
a synthetic dataset, essentially an inferred approximation of
A’s real dataset. We denote A’s real dataset as Rreal and the
synthetic dataset generated by B as Rsyn. Privacy leakage is a
concern if we can identify data points or values in Rsyn that
closely match or replicate those in Rreal.

To understand and measure the privacy risk, we define
‘identifiability’ – a fundamental concept in the GDPR1.

Definition 2.1: (Identifiability) We say a tuple t is identi-
fiable if, for the relation Rreal of the real data, ∃A ⊂ Rreal

such that for any value a ∈ A, ∃!t ∈ R such that t[A] = a.
The above definition of identifiability hinges on whether

a unique data point can be isolated based on a specific set
of values for a given set of attributes A. If such a set exists
where only one data point equals the tuple value of A, the
data point is classified as identifiable. Thus, anonymization
techniques [11] aims to ensure that shared data remain non-
identifiable, upholding privacy standards and aligning with
data protection regulations like the GDPR.

Identifiability pertains to the ability to link specific data
elements within a dataset (in this case, Rsyn) to their counter-
parts in another dataset (Rreal) during data sharing. Next, we
discuss privacy in the context of vertical federated learning,
which has a different characteristic than data sharing.

Privacy for VFL. Federated learning aims to train machine
learning models across multiple data sources, or ‘silos’, while
preserving privacy. Before the training begins, data from
various parties is synchronized using private set intersection
techniques [10], [12]. This process ensures that the identity of
the data tuples is known only to the parties involved in the
training. This unique aspect of Vertical Federated Learning
calls for a more nuanced understanding of privacy leakage.
To address this, we propose a distinct definition of privacy
leakage for VFL. Since categorical and continuous data types
have different impacts on privacy risks, we will define the
privacy leakage for each data type separately.

Definition 2.2: (Categorical data privacy leakage for VFL)
Consider the scenario where Rreal and Rsyn represent the
relations in the real dataset and synthetic dataset, respectively.
Let A be a subset of categorical attributes in Rreal. For any
given tuple ti, which exists at the same index i in both
Rreal and Rsyn, we observe a privacy leakage if the attribute

1https://gdpr-info.eu/art-5-gdpr/

values of ti in A are identical in both Rsyn and Rreal, i.e.,
tsyn
i [A] = treal

i [A].
The proposed definition of privacy leakage considers the

correspondence between the ith tuple in the real and the syn-
thetic dataset. Privacy leakage occurs if values match within
these tuples, as distinct values for categorical attributes carry
divergent meanings. The index assumes critical importance in
the context of VFL due to its source being the intersection of
collaborating entity’s datasets.

For continuous attributes, a more nuanced definition of data
privacy is required. Given the extensive variability inherent
in continuous variables, theoretically, they possess infinite
possible exact values. Consequently, if a generated value falls
within a parameterized neighborhood of the real attribute
value, measured using a specified distance metric d() such
as Euclidean distance [8], it should be classified as a privacy
leakage, which leads to the below definition.

Definition 2.3 (Continuous Data Privacy Leakage in VFL):
Consider the scenario where Rreal and Rsyn represent the
relations in the real dataset and synthetic dataset, respectively.
Let A be a subset of continuous attributes in Rreal, and ϵ be a
given error threshold. For any given tuple ti, which exists at
the same index i in both Rreal and Rsyn, we observe a privacy
leakage if the distance d between tsyn

i [A] and treal
i [A] is within

the error threshold, i.e., d(tsyn
i [A], treal

i [A]) ≤ ϵ.

III. PRIVACY ANALYSIS OF METADATA

Metadata describes the data, for example, attributes and
domains, and outlines the table’s dimensions. FDs and RFDs
indicate the dependencies among attribute values and inher-
ent data structures. In current federated learning frameworks
[12], [16], metadata such as attribute names and domains
are commonly exchanged among different parties. However,
the potential privacy implications of sharing this expanded
metadata scope remain unexplored.

A critical concern is that sharing metadata can jeopardize
data privacy. This risk stems from having access to meta-
data, allowing for data generation based on the underlying
data structures. This process of data generation, informed
by the knowledge of metadata, poses a significant threat to
data privacy. Therefore, our study aims to examine whether
sharing various types of metadata, including attribute names
and domains (Section III-A), functional dependencies (Sec-
tion III-B), and relaxed functional dependencies (Section IV),
might inadvertently lead to privacy breaches.

A. Attribute Name and Domain

We first discuss whether sharing attribute (feature) names
and domains will leak privacy.
Privacy Analysis. When generating a synthetic dataset, the
generation of each tuple is independent; this implies that
generating the entire data set will follow a binomial distri-
bution. Given attribute A, we denote θA as the probability of
generating the actual value of A correctly, i.e., the same as
the real dataset. Letting DA = Dom(A), we can see that for
random generation from a uniform distribution, θA = 1

|DA| .

The binomial distribution will give us the expected number of
correct generations as NθA, where N is the total number of
data instances. As N , and θA are non-zero, a positive number
of values can be generated correctly, so following Definition
2.2, if NθA ≥ 1, we will have privacy leakage.

Example 3.1: Considering the attributes in Table II and
the attribute Age and department, which has a domain from
[18,26] containing 9 values. So then the probability of generat-
ing a tuple with the identical age value as the real dataset is 1

9 .
Given there are only 4 data points, there will be a probability
of 4

9 of generating any age correctly within the table, so the
likelihood of privacy leakage is low. However, for the domain
of department, there are only 3 departments, so the probability
of random generating the department is 1

3 , so the expected
value would be 4

3 , meaning that we would expect there to be
one correct guess.

B. Functional Dependency

Consider a functional dependency from attribute A → B,
having of domains DA = Dom(A), DB = Dom(B) respec-
tively; we can infer the probability of correct generation to be
θA = 1

|DA| and θB = 1
|DB | . The expected value of generating

the correct value of A will be NθA.
Privacy Analysis. Given a functional dependency A → B
and ai ∈ DA, B =

⋃
πA. For generating the mappings that

satisfy the dependencies A → B, the probability of generating
the mapping from A to B is P (B|A = ai) = 1

DB
. Data

generation occurs once across the dataset, which are deter-
mined by functional dependencies. An FD A → B reveals
underlying relationships A and B, allowing for their one-
time initialization throughout the dataset without necessitating
explicit knowledge of each dependency, thereby facilitating the
derivation of relationships directly from their definitions.

The FD A → B indicates that A refines B, meaning
that |DA| ≥ |DB |. Following a binomial distribution, the
number of correctly generated dependencies is E(B|A) =
|DA|
|DB | =⇒ E(B|A) ≥ 1. It means there will be at least
one correct mapping between A and B. However, the total
expected value of generating the correct values of A and B is
NθA

E(B|A)
|A| , which would be the same as random generation.

The generation of the values of attributes A, B will solely
depend on the values of the synthetic dataset; we have the
expected value of n

|DA| values are correct. Then, for all of the
correct values, we assume the number of correct values will
be dependent on the domain of A.

Example 3.2: Consider the example in Table II, and the
FD Salary → Age. Assuming the domain of Age is in the
range of values [18, 26] and the salary is in the range [20, 35]
in thousands; there is an FD between salary and age. We can
generate values for salary such as {20, 25, 30, 35}, and then the
mappings can be generated as 20 → 20, 25 → 23, 25 → 25,
35 → 26. This mapping satisfies the definition of functional
dependency. From the mapping, if tuples have a salary of 20k,
then the age value is 20.

A correct mapping would mean the mapping is always
correct; consequently, if the mapping is incorrect, it would

always be incorrect. Whereas, for random generation, correctly
generating the age attribute will not depend on the generation
of the salary attribute.

The above argument can be extended to more than one func-
tional dependency. Consider 3 attributes A,B,C ⊂ R, of rela-
tion R , with domain DA = Dom(A), DB = Dom(B), DC =
Dom(C). The property of transitivity, states that if A → B
and B → C, then the value of A will decide B, which in turn
decides the value of C. The mapping generation between B
and C is an identical procedure to that utilized for A and
B, given the independence of these dependencies. Relative
to the current information disclosure level, communicating
functional dependencies, in conjunction with attribute names
and domains, does not exacerbate privacy leakage.

IV. PRIVACY ANALYSIS OF RFDS

Extensive research has been conducted on relaxed functional
dependencies (RFDs), with 35 prominent types of RFDs
compared in a survey [9]. However, a significant proportion of
these RFDs represent variations of a core set. Therefore, in this
section, we have selectively conducted a privacy analysis of a
subset of representative RFDs, with the arguments applicable
to their variations.

A. Approximate Functional Dependency

Approximate functional dependency (AFD) is a common
variation of regular function dependency with the inclusion
of the g3 error [14]. The g3 error states that given relations
R, there is a subset of relations ∃R1 ∈ R such that for
attributes A,B ⊂ R the functional dependency A → B holds
on the relation R without excluding R1. The error term is
defined to be ϵ = |R|−|R1|

|R| , meaning that for this RFD, if
an ϵ proportion of points are removed from relation R then
the functional dependency would hold. This can be seen to
be similar to the probabilistic functional dependency (PFD)
definition, except being defined on the entire schema, it is
defined on the partitions of A [21].
Privacy Analysis. The expected value will include a factor for
1
ϵ to the expected value of strict functional dependency. Imply-
ing that we will have an Nϵ

|A||B| of random generated data and
Nϵ

|A||B| . The total amount of correct data generated will be the
same as strict functional dependency and random generation.
Similar to functional dependency, the 1 − ϵ proportion will
belong to a subset of partitions of A, and the ϵ proportion of
data generated correctly will be scattered across all partitions.
We will arrive at the same expression for FD, so the privacy
conclusion for AFD is the same as FD.

B. Numerical Dependency

Numerical Dependency enforces a cardinality constraint on
attribute X, stipulating that each value of X is associated with
no more than K values in attribute Y. This constraint means
that given the domain of Y, there are at most K unique values
that each value of X can map to.
Privacy Analysis. For each attribute of X, we would have the
probability θX = 1

|X| of correctness leading to the expected

value of NθX , and generating mapping from X → Y follows
a hyper-geometric distribution [20]. Generation of the mapping
from X to Y would depend on random selection, or we can
assume that the mappings all have the same cardinality. As for
each value of X, the domain of attribute Y is partitioned into
one that is valid in the original and one that is not. Through
random selection, the expected value of correct mappings
is nK

N , where N = |DY |, DY = Dom(Y) and K is the
cardinality of the partition of X, n is the number of samples
we are selecting.

For the generation of attribute Y, the mappings generated
that would be correct would be kK

N , where the assumption is
that N >> K. For each value of X, by the hyper-geometric
distribution, the expected value of generating correct mappings
is k2

|DY | . The probability of finding at least one correct mapping

that satisfies the dependency is thus 1 − ((|DY |−K)
K)

(|DY |
K)

. The

probability of selecting the correct map from the generated
mappings is selecting K

|DY | . As the selection is independent,
the probability of selecting X and Y values both correctly has
a probability of K

|DY ||DX | . This means that the expected value
of generating the pair of attributes X and Y both correctly is

NK
|DX ||DY | . However, there is the possibility that that is not
the case, that if k > N

2 , then there would be guaranteed
at least |N2 − k| dependencies correct. This situation would
significantly increase the expected value for privacy leakage.

C. Order Dependency

Unlike approximate and functional dependencies predicated
on equality, order dependency is established based on inequal-
ity and ordering. This applies to categorical and continuous
attributes, as ordering is definable across all variable types.
We can define the dependency to be for a relation R if we
let X,Y ⊂ R, such that ∀t, u ∈ R if t[X] ≤ u[X] →
t[Y] ≤ u[Y]. If there is an order dependency from attribute
X to Y, for any tuple, if X increases, attribute Y’s value will
increase, i.e., the ordering attribute X will also order attribute
Y. Suppose we consider the order dependency from categorical
X to continuous Y attributes. In that case, this implies that
we know the number of intervals, as the definition of the
order dependency gives this. Thus, we can create a sequence
of yi, i ∈ 1, ...n where n is the size of the domain of X.
Forming partitions of the domain of Y into intervals denoted
by [yi, yi+1].

The alternative would be if we have the order dependency
defined between continuous attributes X and Y, we can simi-
larly discretize the domain of X. We can create intervals within
the domain of Y that satisfy order dependency. The discussion
for categorical attributes is discussed in Section IV-E.

Privacy Analysis. Suppose there are two sequences, {y′

i} and
{yi} over the same domain. We want to obtain the probability
of the intersections of the intervals created by the sequence
[y

′

i, y
′

i+1] over the domain of the attribute Y. For the first
interval we re generating y

′

1 against y1. The probability that

we generate within the right interval is y
′
1−y1

|DY | . This probability

of correctness will be given by overlap of the interval
total remaining size of the domain . We

are generating conditions on the previous interval for the next
and hereafter intervals. For generating y

′

2 we know that it will
be greater than y

′

1, so we must consider what will happen if we
are generating y

′

2 < y1 and when y
′

1 > y2, then the overlap of
the intervals [y

′

1, y
′

2] and [y1, y2] is ∅. If the overlap is the
empty set, this would imply a zero probability; otherwise,
the probability would be non-zero. The probability that the
value for attribute Y will be generated given value xi becomes

θyi =
max(yi+1−y

′
i ,0)

ymax−yi
.

This probability will be used for each of the intervals to
find the probability is θxi

∗ θyi
overlap between the initial

and terminal intervals due to a fixed domain. Consequently,
the probability that at least two partitions of attribute A will
exhibit non-zero values is guaranteed. The expected value for
the number of data instances that we will be able to generate
is given by two binomial distributions, with NθXθY number
of points generated correctly. The total expected value will be∑

i Nθxiθyi , where θyi is defined as above.
Because of the high variance in this dependency defined

for continuous features, we would expect the error to be quite
high implying that the privacy leakage would be quite low.
It would also depend very heavily on the partitioning of the
domain of Y depends very heavily on the distribution of Y.
However, this distribution is not communicated, so we will
assume a uniform distribution for our experiments.

D. Differential Dependencies

These dependencies arise from the principle of differenti-
ation, where, given a metric for attribute X, a corresponding
dependency is established for a metric defined on attributes Y.
[22]. As we are working with continuous variables, we will
consider that having an error of ϵ would still leak privacy.
So we would have the expected value of n 2ϵ

|DX | of correctly
generated points, where DX = Dom(X).

To fulfill this requirement, it is necessary that for a given
metric applied to attributes X, the attributes Y must meet their
corresponding metric criteria. This implies that if values of X
in tuples are proximal, then the Y values in those tuples should
also be proximal. To uphold this principle, intervals within the
domain of Y can be established to mirror the intervals on the
domain of X. In other words, given relation R, we have ∀t ∈ R
such that ∀ϵ > 0,∃δ;∀t[X] ∈ [xi − ϵ, xi + ϵ] =⇒ t[Y] ∈
[yi − δ, yi + δ].

Privacy Discussion of Differential Dependency. For every
value of X, a ball can be constructed around it, ensuring
that any value within this ball is mapped to a value within
a corresponding ball centered around the Y attribute’s value.
A ball is a set of values of the attribute that are within an
equal distance from a specific value. We generate the correct
value with respect to the interval [x − ϵ, x + ϵ], this has a
probability of 2ϵ

|DX | . Similarly, the probability of generating
the correct Y would follow a Markov process [17], as the
interval would be defined relative to previous intervals. If a
value resides within an interval previously generated, then

the intervals of attribute X will exhibit overlap, leading to
a consequent overlap in the intervals of attribute Y. The
likelihood of accurately generating the overall mappings is
determined by the product of overlaps, normalized by the
range. The generation of the attribute X will have a probability
of 2ϵx

range(x) . For the attribute Y there is a probability of
y

′ ∈ Rsyn, y ∈ Rreal the probability of generating the

correct Y attribute value is [y
′
−ϵ,y

′
+ϵ]∩[y−ϵ,y+ϵ]

range(Y) . Giving us
an overall probability of generating the correct value to be
2ϵx[y

′
−ϵ,y

′
+ϵ]∩[y−ϵ,y+ϵ]

range(X)range(Y) . The expression for the expected value
is similar to order dependency. It will heavily rely on the
overlapping of the generated intervals of the domain with the
intervals of the real data.

E. Ordered Functional Dependencies (OFD)

An ordered functional dependency combines functional and
order dependency and can be defined as follows [18]. It is
an OFD, X → Y , if we consider relation R and attributes
X,Y ⊂ R, and ∀ tuples t, u ∈ R, if t[X] = u[X] → t[Y] =
u[Y] but also satisfying t[X] < u[X] =⇒ t[Y] < u[Y].

Privacy Discussion of Ordered Function Dependency. This
relationship imposes more significant restrictions compared to
functional and order dependencies. Consequently, the mapping
generation adheres to a continuous time Markov chain model
[17], facilitating the modeling of dependency transitions. This
model is characterized by a transition matrix that specifies
state change probabilities; the state changes are similar to the
map for ordered functional dependencies. The target states
correspond to the domain values of attribute B, rendering the
mapping generation akin to a time-variant, one-dimensional
directed random walk [23].

The probability of being correct depends on the transition
probabilities, and it turns from making a high-dimensional
choice to a binary one. But similar to other dependencies, the
correctness will still follow a binomial distribution, except the
probability for the dependency is time-dependent; thus, the
expected value of the number of correct relations generated
is given by NθXθYt

. A sample probability could be created
from a uniform distribution with respect to the total number
of remaining partitions Pi,i+1 = 1− |X|−t

|Y | . This will give us
a transition probability of 1 if we have reached the maximum
remaining partitions of A so that the relation will be preserved
as all values in the domain need to be covered. Following the
argument in order and differential dependency, the distribution
within the attributes is unknown, meaning that we will also
assume the transition probability will be uniform.

The derivations allow us to conclude the data privacy
implications of the analyzed dependencies. The focus has
been on the implications on data privacy of functional and
relaxed functional dependency in conjunction with feature
name and domain.

TABLE III
PRIVACY LEAKAGE OF CONTINUOUS ATTRIBUTES

Dep Attr 0 Attr 2 Attr 4 Attr 5 Attr 6 Attr 7 Attr 8 Attr 9
Rand Gen 580.49 1169.96 0.43 114.17 10.14 138.69 1.71 0.93
Func Dep 580.25 1172.4 0.43 114 10.11 138.6 1.71 NA
Ord Dep 581.43 1383.86 0.24 17.33 9.63 139.44 1 1.41
Num Dep 708.58 NA NA NA NA NA NA NA

Summary
- Metadata, such as the domain of an attribute, enables
random generation with the risk of privacy leakage.
- Metadata such as functional and relaxed functional
dependencies can be communicated without extra privacy
leakage.

V. EVALUATION

This section shows the preliminary experimental evaluation
of our main contribution: privacy analysis over relaxed func-
tional dependencies. The evaluation will be bifurcated based
on data types: categorical and continuous, as delineated earlier.
Dataset. To assess the practical utility of our solution, we test
over a commonly used dataset, echocardiogram [4] from the
FD/RFD repeatability project2. We chose the echocardiogram
dataset as we can discover functional dependencies, order
dependencies, and numerical dependencies from this dataset.
From other datasets, we can only discover trivial dependencies
or oversimplified mappings, which do not serve the purpose
of our discussion. Echocardiogram contains 132 rows and 13
attributes. We present the results of the categorical attributes
in Table IV and those of the continuous attributes in Table III.
We have performed the validation based on the definitions for
privacy leakage from Section II. The validation metric will be
exact matching and the mean squared error (MSE) for categor-
ical and continuous attributes. All generations derive from the
predefined dependencies. The dependencies form a directed
graph between the attributes which is used for generation. A
fundamental assumption underlying our methodology is that
the distribution remains undisclosed. The original raw data
will remain in possession of the original possessor.

Table IV shows the number of positive matches for each
method using random generation or with functional dependen-
cies, order dependencies, or numerical dependencies. Among
the four attributes, values expressed by NA are the attributes
that were not discovered for the specific dependency; thus,
the dependency cannot be utilized for generating the attribute.
The results of positive matches with functional dependencies
and order or numerical dependencies are close to a random
generation, indicating these dependencies add little value if a
malicious party tries to generate a syntactic dataset to mimic
the real dataset. Such an observations are consistent with our
derivations and conclusions from Section III-B and IV.

The precise index of the appropriate generation may not be
critically important, contingent upon the context. To illustrate,

2https://hpi.de/naumann/projects/repeatability/data-profiling/fds.html

TABLE IV
PRIVACY LEAKAGE OF CATEGORICAL ATTRIBUTES

Dependency Attr 1 Attr 3 Attr 11 Attr 12
Random Generation 44 44 33 44

Functional Dep 44.082 43.954 32.815 NA
Order Dep 44 32 29 47

Numerical Dep 56 NA NA NA

consider a collaboration between a financial institution and an
e-commerce platform with the goal of loan approval classifi-
cation. The latter may aim to implement targeted advertising,
which does not align with the primary objective. The accurate
generation of information can culminate in more effective
targeted advertisements compared to no advertisements. Oper-
ating under the presumption that all data values are accurate,
a proportion of recommendations will facilitate appropriate
recommendations. Conversely, inaccurate advertisements yield
results comparable to scenarios without available data.

Table III shows the MSE of the generated attribute values
against the real values for the discovered dependencies. The
MSE is the mean error over many generation rounds to
decrease the variance of the error. Following our assumptions,
this would be the expected value over this dataset. Different
data ranges will, of course, lead to very different MSE values.
We can interpret these values as an indicator of a value of
epsilon to indicate leakage. Comparing the values in the table,
we can conclude that the privacy leakage caused by having
dependencies is not more than guessing. Because a larger
MSE and fewer exact matches mean less privacy leakage. The
outcomes for FDs and RFDs corroborate our prior discussions
regarding continuous variables. It is more evident for the
continuous variables regarding certain RFDs within datasets.

VI. CONCLUSION

Our examination addressed various metadata characteristics
of datasets pertinent to the preparation phase for VFL. The
metadata we discussed are feature names, feature domains,
functional dependencies, and relaxed functional dependencies.
Our findings indicate that specific amalgamations of metadata
can precipitate privacy breaches. Notably, privacy leakage
was observed to be analogous to instances where feature
names, domains, and types were disclosed. We have shown
that functional and relaxed functional dependencies do not
leak more privacy. We can conclude that feature names and
dependencies should be communicated without the domain
and type. We have shown that RFDs can be communicated
as metadata for VFL without leaking more privacy.

REFERENCES

[1] General Data Protection Regulation (GDPR) – Official Legal Text —
gdpr-info.eu. https://gdpr-info.eu/. [Accessed 01-11-2023].

[2] Information privacy act 2009. https://www.legislation.qld.gov.au/view/
pdf/inforce/current/act-2009-014. (Accessed on 08/31/2023).

[3] Personal information protection law of the people’s republic of china.
http://en.npc.gov.cn.cdurl.cn/2021-12/29/c 694559.htm. (Accessed on
08/31/2023).

[4] Echocardiogram. UCI Machine Learning Repository, 1989. DOI:
https://doi.org/10.24432/C5QW24.

[5] Health Insurance Portability and Accountability Act of 1996 (HIPAA)
— CDC, Nov 1996.

[6] Tobias Bleifuß, Susanne Bülow, Johannes Frohnhofen, Julian Risch,
Georg Wiese, Sebastian Kruse, Thorsten Papenbrock, and Felix Nau-
mann. Approximate discovery of functional dependencies for large
datasets. In Proceedings of the 25th ACM International on Confer-
ence on Information and Knowledge Management, CIKM ’16, page
1803–1812, New York, NY, USA, 2016. Association for Computing
Machinery.

[7] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios
Kementsietsidis. Conditional functional dependencies for data cleaning.
In 2007 IEEE 23rd International Conference on Data Engineering,
pages 746–755, 2007.

[8] D. Burago, Y. Burago, and S. V. Ivanov. A course in metric geometry.
Graduate Studies in Mathematics, 2001.

[9] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. Relaxed
functional dependencies—a survey of approaches. IEEE Transactions
on Knowledge and Data Engineering, 28(1):147–165, 2016.

[10] Kewei Cheng, Tao Fan, Yilun Jin, Yang Liu, Tianjian Chen, Dimitrios
Papadopoulos, and Qiang Yang. Secureboost: A lossless federated
learning framework. IEEE Intelligent Systems, 36(6):87–98, nov 2021.

[11] Aloni Cohen. Attacks on deidentification’s defenses. In 31st USENIX
Security Symposium (USENIX Security 22), pages 1469–1486, Boston,
MA, August 2022. USENIX Association.

[12] Fangcheng Fu, Huanran Xue, Yong Cheng, Yangyu Tao, and Bin
Cui. Blindfl: Vertical federated machine learning without peeking into
your data. In Proceedings of the 2022 International Conference on
Management of Data, SIGMOD ’22, page 1316–1330, New York, NY,
USA, 2022. Association for Computing Machinery.

[13] Ykä Huhtala, Juha Kärkkäinen, Pasi P. Porkka, and Hannu (TT)
Toivonen. Tane: An efficient algorithm for discovering functional and
approximate dependencies. Comput. J., 42:100–111, 1999.

[14] Jyrki Kivinen and Heikki Mannila. Approximate inference of func-
tional dependencies from relations. Theoretical Computer Science,
149(1):129–149, 1995. ICDT.

[15] Yang Liu, Yan Kang, Tianyuan Zou, Yanhong Pu, Yuanqin He, Xi-
aozhou Ye, Ye Ouyang, Ya-Qin Zhang, and Qiang Yang. Vertical
federated learning: Concepts, advances and challenges. arXiv preprint
arXiv:2211.12814, 2022.

[16] Xinjian Luo, Yuncheng Wu, Xiaokui Xiao, and Beng Chin Ooi. Feature
inference attack on model predictions in vertical federated learning. In
2021 IEEE 37th International Conference on Data Engineering (ICDE),
pages 181–192, 2021.

[17] A. A. Markov. The theory of algorithms. Journal of Symbolic Logic,
18(4):340–341, 1953.

[18] Wilfred Ng. Ordered functional dependencies in relational databases.
Information Systems, 24(7), 1999.

[19] Raghu Ramakrishnan, Johannes Gehrke, and Johannes Gehrke.
Database management systems, volume 3. McGraw-Hill New York,
2003.

[20] J.A. Rice. Mathematical Statistics and Data Analysis. Advanced series.
Cengage Learning, 2007.

[21] Dan Simovici, Dana Cristofor, and Laurentiu Cristofor. Impurity
measures in databases. Acta Informatica, 38, 10 2002.

[22] Shaoxu Song and Lei Chen. Differential dependencies: Reasoning and
discovery. ACM Trans. Database Syst., 36(3), aug 2011.

[23] H. M. Taylor and S. Karlin. Markov chains. An Introduction to
Stochastic Modeling, pages 79–163, 2011.

[24] Paul Voigt and Axel Von dem Bussche. The eu general data protection
regulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer Interna-
tional Publishing, 10(3152676):10–5555, 2017.

[25] Daisy Zhe Wang, Xin Luna Dong, Anish Das Sarma, Michael J.
Franklin, and Alon Y. Halevy. Functional dependency generation and
applications in pay-as-you-go data integration systems. In International
Workshop on the Web and Databases, 2009.

[26] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated
machine learning: Concept and applications. ACM TIST, 10(2), jan 2019.

