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Abstract—Data integration and cleaning have long been a
key focus of the data management community. Recent research
indicates the potential of large language models (LLMs) for
such tasks. However, scaling and automating data wrangling
with LLMs for real-world use cases poses additional challenges.
Manual prompt engineering for example, is expensive and hard
to operationalise, while full fine-tuning of LLMs incurs high
compute and storage costs.

Following up on previous work, we evaluate parameter-
efficient fine-tuning (PEFT) methods for efficiently automating
data wrangling with LLMs. We conduct a study of four popular
PEFT methods on differently sized LLMs for ten benchmark
tasks, where we find that PEFT methods achieve performance
on-par with full fine-tuning, and that we can leverage small LLMs
with negligible performance loss.

However, even though such PEFT methods are parameter-
efficient, they still incur high compute costs at training time
and require labeled training data. We explore a zero-shot setting
to further reduce deployment costs, and propose our vision for
ZEROMATCH, a novel approach to zero-shot entity matching.
It is based on maintaining a large number of pretrained LLM
variants from different domains and intelligently selecting an
appropriate variant at inference time.

I. INTRODUCTION

Data wrangling problems like entity matching [1], error
detection [2], [3] and data imputation [4] have long been a
focus of the data management community.

The potential of LLMs for data wrangling. Recent research
indicates the potential of large language models (LLMs) for
data wrangling [5]. In particular, Narayan et al. [6] show
that few-shot prompted LLMs (with carefully chosen few-shot
samples) obtain state-of-the art performance on several data
wrangling benchmark tasks.

Automation and scalability challenges. While this strong
performance of few-shot prompted LLMs is exciting, there
exist several challenges in applying such methods in real-
world scenarios [7]. As an example, imagine a cloud provider
who wants to offer LLM-based data wrangling services to its
customers. This cloud provider cannot use few-shot prompting
for their service, as these prompts have to be manually
designed with access to the underlying data. This is (i) not
scalable as ML experts for these tasks are hard to hire and
expensive; and (ii) not operationalisable, as employees of
a cloud provider cannot access their customers’ data for
legal reasons. Automatable alternatives such as fine-tuning the
LLMs also incur scalability challenges: (i) the cloud provider
cannot fine-tune a single LLMs for all customers, the data and

models for different customers must be strictly segmented for
legal reasons [8] instead. However, creating and maintaining
a full fine-tuned model copy per customer (or even worse per
customer/task/dataset combination) does not scale either due
to the incurred high compute and storage costs.

Parameter- and compute-efficient data wrangling with
LLMs. In order to address some of the issues above, the
ML community has developed parameter-efficient fine-tuning
(PEFT) methods [9]–[12], which can be automatically trained.
We recently showed in preliminary work [7] that one such
method [10] achieves performance close to full fine-tuning in
many cases with a fraction of the parameter updates (less than
1%) required for full fine-tuning. This preliminary work has
several shortcomings: it only includes a single LLM and PEFT
method, and does not discuss the computational costs of the
PEFT methods, which are close to the cost of full fine-tuning,
as their training still needs to backpropagate errors through
the full model. We address these shortcomings in this vision
paper with the following contributions.

Contribution 1: Extended study on parameter-efficient fine-
tuning of LLMs for data wrangling (Section II). We evaluate
four popular PEFT methods and three baselines on differently
sized LLMs for the ten benchmark tasks from [6], and
additionally measure the training and inference times. We
find that the PEFT methods can achieve performance on-par
with full fine-tuning, and that we can leverage small LLMs
with negligible performance loss. However, even though the
PEFT methods are very parameter-efficient, they still incur
high compute costs at training time.

Contribution 2: Vision for zero-shot entity matching (Sec-
tion III). We explore a zero-shot setting to further reduce
deployment costs. We find experimental evidence for the trans-
ferability of learned model adaptations for entity matching in
such a setting, if they are pretrained on a suitable dataset.
Based on this, we propose a vision for ZEROMATCH, a novel
approach to zero-shot entity matching, based on maintaining
a large number of pretrained LLM variants from different
domains and intelligently selecting an appropriate model at
inference time.

Contribution 3: Code and results for reproducibility. We pro-
vide our code and experimental results at https://github.com/
Jantory/cpwrangle

https://github.com/Jantory/cpwrangle
https://github.com/Jantory/cpwrangle


TABLE I: Benchmark datasets from [6] with their correspond-
ing task and domain.

Task Dataset Domain #Samples

Entity matching Beer food 450
iTunes-Amazon music 539
Fodors-Zagats food 946
Walmart-Amazon electronics 10,242
Amazon-Google software 11,460
DBLP-ACM citation 12,363
DBLP-Google citation 28,707

Error detection Hospital healthcare 19,000

Data Imputation Buy electronics 651
Restaurant address 864

II. EXPERIMENTAL STUDY

We conduct an extensive empirical study to evaluate the
prediction quality, parameter efficiency and computational
efficiency of various fine-tuning techniques and LLMs for
data wrangling. In-line with previous work [7], we only
include automatable methods which do not require manual
interventions. Hence, we do not, for example, perform manual
prompt engineering to select few-shot samples.

Experimental setup. We employ four popular PEFT meth-
ods from HuggingFace [13] to fine-tune models with fewer
parameter updates:
• Prompt-Tuning [12] – solely focuses on the model input by

prepending soft prompts (virtual tokens).
• P-Tuning [11] – learns a template filled with virtual tokens

to which the original input is adapted.
• Prefix-Tuning [10] – prepends learnable virtual tokens to

both the input and the output of each transformer layer.
• LoRA [9] – learns a low-rank decomposition of the weight

update for fine-tuning.

Datasets and tasks. Following [7], we use the ten benchmark
datasets from [6] originating from various domains, as detailed
in Table I. The tasks are entity matching on seven datasets
(where the goal is to identify equivalent entities within dif-
ferent tables), error detection on one dataset (where the goal
is to detect errors in cells of a table) and data imputation in
two datasets (where the goal is to impute missing values in a
column). We use the predefined train/test splits and measure
the F1 score for entity matching and error detection, and
accuracy for data imputation.

Models and hyperparameters. We use Google T5 [14], an
encoder-decoder model that unifies several text-related tasks
into a common task with the same learning objective. In
particular, we employ three variants of T5: T5-small (60.5M
parameters), T5-base (223M parameters) and T5-large (738M
parameters). A single GTX 1080 ti GPU with 11GB of
memory is used for training and inference.

Due to the large number of combinations between mod-
els, PEFT methods and datasets, we perform hyperparameter
search only once on the challenging Amazon-Google dataset
and the medium-sized T5-base model, and subsequently apply

the discovered values to the other experimental configurations.
We use a learning rate of 0.2 for most methods, except for
LoRA, which uses a learning rate of 0.001. We set both the
rank and scaling factor to eight for LoRA. We utilize 50 virtual
tokens for both P-Tuning and Prefix-Tuning, whereas Prompt-
Tuning uses 60 virtual tokens. We train the T5-small and T5-
base models for 200 epochs with a batch size of 16, except
for DBLP-ACM, where we train T5-base for 100 epochs with
a batch size of 12 only, due to memory constraints. The T5-
large models are trained for 100 epochs with a batch size of
eight, however in the case of DBLP-ACM and DBLP-Google,
we train them for 50 epochs only with a batch size of four. We
cannot fully fine-tune T5-large unfortunately due to memory
issues, which even occur with an additional GPU.
Baselines. We compare our PEFT models against three au-
tomatable baselines:
• The commercial GPT-3 model (with 175B parameters) from

OpenAI with zero-shot prompting as evaluated in [6].
• The AutoML library autogluon [15] from Amazon Research,

for which we model our tasks as tabular classification
problems.

• Fully fine-tuned versions of T5-small and T5-base.

Results for prediction quality. We detail the F1 and accuracy
scores of our study in Table II. The symbol ’⋆’ denotes that
the results are sourced from published papers, bold values
highlight the best performance achieved across all PEFT
models on a specific dataset, and underlined values indicate
the second best result. We find that PEFT methods drastically
outperform the zero-shot GPT-3 baseline, even when using
the T5-small model, which has only 60.5M params (about
3,000 times less then GPT-3). The LoRA method on T5-
small achieves a mean performance of 90.96, compared to
only 66.71 for GPT-3. The PEFT methods also drastically
outperform the AutoML baseline as well, which reaches a
mean score of 76.88 only.

Among the PEFT methods, LoRA provides the highest
quality (with the strongest performance in six out of ten
datasets), while Prefix-Tuning also shows strong performance
in several cases. We find that applying PEFT methods to T5-
large provides higher mean performance than for the smaller
T5-base and T5-small models, however the differences are
minor (92.24% compared to 92.3% and 90.96%), even though
T5-large has an order of magnitude more parameters than
T5-small. For T5-small and T5-base, the LoRA method even
outperforms full fine-tuning by a small margin, confirming
results observed for other tasks [9].
Results for training and inference time. Next, we evaluate
the computational costs for training and inference with a single
a single GTX 1080 ti GPU with 11GB of memory.
Training time. We measure the training time for all PEFT
methods and LLMs. We find that the relative performance
of the PEFT methods is similar across all datasets, and plot
results for Amazon-Google as a representative example in Fig-
ure 1(a). There, P-Tuning and Prompt-Tuning are the slowest
methods with up to 249 seconds per epoch on T5-large, LoRA



TABLE II: F1/accuracy scores of various PEFT methods for ten data wrangling benchmark datasets. Bold scores indicate the
highest performance for a dataset, underlined scores indicate the second-best result.

LLM Method Parameter
Updates

Beer iTunes-
Amazon

Fodors-
Zagats

Walmart-
Amazon

Amazon-
Google

DBLP-
ACM

DBLP-
Google

Hospital Buy Restau-
rant

Mean
Score

GPT-3 (175B) Zero-shot ⋆ - 78.60 65.90 87.20 60.60 54.30 93.50 64.60 0.07 84.60 70.90 66.71

- AutoML - 72.00 76.60 81.63 39.21 58.12 97.41 91.13 98.63 78.46 75.58 76.88

Prompt 48K 89.66 91.53 100.00 75.75 71.26 98.87 95.26 75.61 87.69 33.72 81.94
T5-small P-tune 212K 78.58 90.20 95.24 63.80 67.62 98.75 94.89 94.07 83.08 34.88 80.11
(60.5M) Prefix 309K 69.57 88.13 97.78 0.00 49.14 92.84 91.79 33.39 92.31 61.63 67.66

LoRA 296K 93.33 96.30 97.67 79.19 72.46 98.76 95.26 94.84 92.31 89.53 90.96
Fine-tune 60,500k 83.87 96.30 97.67 79.56 69.41 98.99 95.01 98.00 92.31 88.37 89.95

Prompt 67K 72.00 93.10 90.00 76.50 70.23 98.44 95.36 96.67 86.15 33.72 81.22
T5-base P-tune 312K 77.78 88.52 100.00 81.08 69.92 98.32 95.52 95.44 86.15 58.13 85.09
(223M) Prefix 914K 85.71 90.20 100.00 68.50 65.73 97.21 94.67 91.23 92.30 59.30 84.49

LoRA 892K 90.32 96.15 100.00 86.39 72.49 98.20 95.63 95.44 93.84 91.86 92.03
Fine-tune 223,000K 93.33 91.23 97.67 77.69 68.91 98.53 93.98 94.97 95.38 91.86 90.36

Prompt 74K 75.86 78.12 97.67 86.16 76.43 98.32 95.93 91.62 83.08 37.20 82.04
T5-large P-tune 369K 0.00 96.42 78.04 86.23 73.89 93.77 80.90 95.20 86.15 75.58 76.62
(783M) Prefix 2,435K 86.67 94.33 100.00 82.09 72.27 96.16 94.19 95.20 92.30 73.26 88.65

LoRA 2,362K 93.33 96.30 100.00 82.64 74.21 96.80 95.11 99.45 93.84 90.70 92.24
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(a) Training time per epoch on
Amazon-Google.
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(b) Mean inference throughput over
all datasets.

Fig. 1: Training time per epoch and mean inference throughput
for different PEFT methods and LLMs.

is slighly faster than those (with 217 seconds/epoch on T5-
large), while Prefix-Tuning turns out to be the fastest PEFT
methods across all LLMs. With 133 seconds/epoch on T5-
large, it is roughly twice as fast as the slowest PEFT methods.
As expected, we encounter drastic differences between LLMs:
tuning T5-small is 4.8-7.9 times faster than T5-large, and 1.8
to 2.6 times faster than T5-base. This is remarkable since
the prediction quality differences are minor for some PEFT
methods like LoRA.

Furthermore, our results highlight a drawback of the existing
PEFT methods: they are designed for parameter efficiency (and
need two orders of magnitude less parameters than full fine-
tuning), but not for compute efficiency. Their training time is
still comparably high, even the fastest method Prefix-Tuning is
only twice as fast as full fine-tuning on T5-base for example.
This is due to the fact that the PEFT methods still need to run
backpropagation through all model layers.

Inference throughput. Data wrangling is usually applied to
large datasets in offline scenarios, which means we are in-
terested in maximising throughput. Therefore, we measure
the inference performance with a single GTX 1080 ti for all
PEFT methods and LLMs on all datasets. We randomly choose
500 test samples per dataset, leverage the maximum possible
batch size (determined by increasing the batch size until we

encounter memory issues), measure the processing time with
PyTorch’s benchmarking package, and repeat each run five
times. Note that we could not apply PyTorch’s JIT optimisation
due to dynamic code in the PEFT implementations.

We compute the mean throughput in terms of samples per
second across all runs of each PEFT method and plot the
results in Figure 1(b). We find that Prefix-Tuning provides
the highest throughput (more than 360 samples/second on
T5-small), closely followed by LoRA. P-Tuning and Prompt-
Tuning have a lower throughput, but the difference is relatively
small in general. We find drastic differences for the LLMs: the
inference throughput on T5-small is 5-6 times higher than on
T5-large, and more than two times higher than on T5-base.
This is remarkable since the prediction quality differences
were minor for methods like LoRA.

Take-aways. In summary, we find that the PEFT methods
can achieve on-par performance with full fine-tuning and
that we can leverage the small variant of T5 with negligible
performance loss. However, even though the PEFT methods
are very parameter efficient, they still incur high compute costs
at training time.

III. OUR VISION FOR ZEROMATCH

The high training costs of PEFT methods for data wrangling
(and connected to this, the requirement of labeled training
data for a given target dataset) still make their deployment
expensive. To further reduce the deployment costs of LLMs for
data wrangling in challenging real-world settings (Section I),
we would ideally like to apply the LLMs in a zero-shot setting
where no training (data) is required. We explore such a setting
in the following.

A. Evidence for the Transferability of Learned Adaptations

Manually engineered prompts often work well across differ-
ent datasets for the same task. Narayan et al. [6] for example
use the same prompt template “Are Product A and Product
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Fig. 2: Vision for ZEROMATCH, a novel approach to zero-shot
entity matching, based on maintaining a large number of pre-
trained LLM variants from different domains and intelligently
selecting an appropriate model at inference time.

B the same?” together with different serialised few-shot sam-
ples for entity matching in the product-related Beer, Fodors-
Zagats, DBLP-ACM and DBLP-Google datasets. Motivated by
this observation, we empirically validate whether PEFT-tuned
models also transfer well in a zero-shot setting.

Experimental setup. We choose the T5-base model and
compute the prediction quality for each benchmark dataset
in a zero-shot setting, using the PEFT model variants learned
on the other datasets. We compare the resulting F1/accuracy
scores to the score of the zero-shot performance of GPT-3 .

TABLE III: F1-scores for entity-matching in the challenging
zero-shot setting, where no training data is available. We can
always find an adapted version of T5-large that outperforms
GPT-3 (which has two orders of magnitude more parameters).

Target GPT-3 T5-base (223M)
dataset (175B) LoRA pretrained on Prompt pretrained on

iTunes-Amazon 65.90 94.73 Beer 91.52 Walmart-Amazon
Beer 78.60 93.33 DBLP-Google 87.50 Walmart-Amazon
Fodors-Zagats 87.50 100.00 iTunes-Amazon 97.67 Walmart-Amazon
Walmart-Amazon 60.60 62.92 Beer 45.51 DBLP-Google
Amazon-Google 54.30 62.75 DBLP-Google 61.85 Walmart-Amazon
DBLP-ACM 93.50 93.73 DBLP-Google 96.25 DBLP-Google
DBLP-Google 64.60 88.96 DBLP-ACM 81.34 Walmart-Amazon

Results and discussion. We observe that the transfer between
tasks does not work: for example, applying adapted models
from data imputation to entity matching or vice versa always
results in an accuracy/F1 score of 0.0. The transfer does also
not work between the two data imputation datasets, which
originate from different domains.

However, we encounter surprising results with LoRA and
Prompt-Tuning for the entity matching datasets, as detailed
in Table III. There always exists a LoRA model which
outperforms GPT-3 in this zero-shot setting (often by a drastic
margin of more than 15%). In six out of seven cases, there
is also a prompt-tuned model, which outperforms GPT-3
(often by more than 10%). This is a strong indication for
the high performance potential of adapted T5 models for
entity matching in the zero-shot setting, assuming that one
can identify a suitable dataset for pretraining.

B. Efficient Zero-Shot Entity Matching with LLMs

Our previous experiment shows the potential of transfering
LoRA weights and soft prompts for zero-shot entity matching,
if they are pretrained on a suitable dataset. Based on this
insight, we formulate our vision for ZEROMATCH, illustrated
in Figure 2, a novel approach to zero-shot entity matching
with LLMs:

(1) “A tree of pretrained adapter weights”: As a preparatory
step, we will pretrain different LoRA weights for a suitable
base model on a variety of datasets from different domains,
inspired by [16]. For that, we will leverage publicly available
datasets, as well as data synthesized by a state-of-the-art LLM
such as GPT-4 based on existing relational schemas [17]. We
will our organise these weights in a tree structure, where
each node retains adapter weights pretrained for a particular
data domain, with its child nodes represent more detailed
subdomains.

(2) “Intelligent model selection at inference time” At infer-
ence time, we will intelligently choose which LoRA weights
to leverage for prediction. For that, we will consult our
tree to identify the adapter weights most suitable the target
dataset, e.g., by inspecting intermediate layer activations of the
corresponding model. Furthermore, we will explore combining
several models via ensembling.

Major challenges for this approach will be to ensure that the
prediction quality is high enough and to minimise the negative
impact on prediction throughput incurred by the overhead of
having to choose an appropriate LLM variant.
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