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Example Dataset: Customer Satisfaction

Customer ID Age City Néc;;t:(ljy Sat:-sefﬁz:ion
1 29 New York 200 High
2 35 Los Angeles -1 Medium
3 Chicago 150 Low
4 42 San Francisco 220 Medium
5 31 San Diegeo 185 High
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Formulate the task of selecting the best repair tools as RL problem

are batches of selects an action IS accuracy
feature vectors of the (i.e., repair tool) for a of target predictor
input dirty data given feature vector on a validation set

< AG
5 © 2024 Software AG. All rights reserved. - SOﬁWq re



ReClean

5

Formulate the task of selecting the best repair tools as RL problem

States are batches of
feature vectors of the
input dirty data
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of target predictor
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Formulate the task of selecting the best repair tools as RL problem
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Optimization Problem o o
Minimize validation loss

mhiﬁn E(xv yoy~pt [Ln(fo(x"),y")]

S.t. fp = arg ?igE(x,y)NPt{ﬁf (f(xhqs(v))vthb(\/)ﬂ
€

Optimization of target model on repaired data

Repair selection network A,

Target model fo : & — Y

Repaired data (thﬁ(vi), yh(b(vi))
Validation set (xV,yY) |7 € {1,2,.... K} ~ P!
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ReClean

Reward Estimation

R =L (f@ (xv)v Z/U) — Limov Avg

Current validation loss
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ReClean

Reward Estimation

R =L (f@ (xv)v Z/U) — Limov Auvg

Moving average

Current validation loss )
of previous losses
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ReClean

Reward Estimation

R = )Ch, (f9 (ZI/'U), Z/U) — LmO’UA’Ug + Eexplore

Moving average Reqgularization term

Current validation loss ) :
of previous losses to force exploration

< AG
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ReClean

Reward Estimation

R= Ly (fo(x"),y") —

Moving average

Current validation loss

of previous losses

_p11

Ypred =—

Predictions of the _pnl
cleaner selector network

7 © 2024 Software AG. All rights reserved.

LmO'UA'Ug =+ Eexplore

Reqgularization term
to force exploration

Pim

Pnm

n, m denote the number of
tuples within batch and the
number of available repair tools

S software~



ReClean

Training Algorithm

8 © 2024 Software AG. All rights reserved.

Require: Mini-batch size B., number of iterations for RL

l:
2:
3:

-~ o =

agent N, number of iterations for predictor Ny, dirty
training dataset D validation dataset DV, feature vectors
V¥ moving average window 1" > 0
Initialize parameters ¢, 6, moving average 0 = 0
for j=1, ..., No do
Sample a mini-batch of samples from the dirty training
dataset and their corresponding feature vectors: D’ =
(%, yi)izy and VP = (Vi) 2,
Output cleaners C; = hy (V)
Apply cleaners on the samples of D’: D¢ = (X;. -g"@)isl
forj=1. ... Ny do
Update the parameters of the predictor network

) B
1 & .
) b—ap Zle VoLy(fo(%i,5i))

Update the parameters of the cleaner selector

) B
. , p 1 - vo_v Y
b @—:_.;33?3 _fEZl[ﬁfz.(fe(x@,yi)) — 5| Vo log my(V?)

Update the moving average baseline: 0 < %O +
: K
77 21 [Ln(fo(%5), ;)]
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ReClean

Training Algorithm

8
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Require: Mini-batch size B., number of iterations for RL

l:
2:
3:

-~ o =

agent N, number of iterations for predictor Ny, dirty
training dataset D validation dataset DV, feature vectors
V¥ moving average window 1" > 0
Initialize parameters ¢, 6, moving average 0 = 0
for j=1, ..., No do
Sample a mini-batch of samples from the dirty training
dataset and their corresponding feature vectors: D’ =

(xi i), and VP = (V)17 . - .
Output cleaners C; = hy (V) Predict probabilities of repair tools

Sample a data batch

—~

Apply cleaners on the samples of D’: D¢ = (X;. -g"@)isl
forj=1. ... Ny do
Update the parameters of the predictor network

Repair each tuple

| B Update target model
Ot —ap > VoLy(fol%i,0i)) parameters
S li=1

Update the parameters of the cleaner selector

5 Update cleaner selector
| ] - I .
b — b — "SB— 2 :[ﬁh(fe(xq{ryi )) — 8| Vglog m,(vb) network parameters

® Li=1
Update the moving average baseline: 0 < %O + Update moving average loss

LS Ln(fa(x)),y5)]
T Z4j h{Jo Y S software~



Performance Evaluation

Experimental Setup

What is the accuracy of

ReClean compared to the
baseline tools?
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Performance Evaluation

Experimental Setup

What is the accuracy of What is the impact of increasing What is the number of
ReClean compared to the the error rate on ReClean and the repair tools employed by
baseline tools? baselines? ReClean?

< AG
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Performance Evaluation

Experimental Setup

What is the accuracy of What is the impact of increasing
ReClean compared to the the error rate on ReClean and the
baseline tools? baselines?

* Six real-world datasets with regression & classification tasks
— errors injected with different rates (typos, missing values, Gaussian noise)
« ED2 has been used for detecting errors

* (leaner-selection network is a four-layer feed-forward neural network with ReLU
activation

— # hidden units adjusted according to the dimensionality of the feature vectors

* Ubuntu 20.04 LTS machine with 16 2.60 GHz cores and 64 GB memory.

9 © 2024 Software AG. All rights reserved.

What is the number of
repair tools employed by
ReClean?
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Performance Evaluation

Experimental Setup

What is the accuracy of What is the impact of increasing
ReClean compared to the the error rate on ReClean and the
baseline tools? baselines?

* Six real-world datasets with regression & classification tasks
— errors injected with different rates (typos, missing values, Gaussian noise)
« ED2 has been used for detecting errors

* (leaner-selection network is a four-layer feed-forward neural network with ReLU
activation

— # hidden units adjusted according to the dimensionality of the feature vectors

* Ubuntu 20.04 LTS machine with 16 2.60 GHz cores and 64 GB memory.
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What is the number of

repair tools employed by
ReClean?

Baseline Method

Configured Parameter |

Mean Imputer
Median Imputer
KNN Imputer (1)
KNN Imputer (2)
KNN Imputer (3)
EM Imputer (1)
EM Imputer (2)
Bayesian Ridge Imputer
MissForest Imputer (1)
MissForest Imputer (2)
MissForest Imputer (3)

number of neighbors
number of neighbors
number of neighbors
number of iterations
number of iterations
number of trees in the forest
number of trees in the forest
number of trees in the forest

S software=~



RMSE Score

Performance Evaluation

Accuracy
Nasa - Smart Factory
540 [0 EM-100 7.05 [0 EM-50
3 ReClean [ ReClean
5 35 7.00
v 6.95
5.30 5
)
wn
% 6.90
5.25 <
% 6.85
5.20 % %
6.80
5.15
10 20 40 60 80 10 20 40 60 80

Error Rate (%) Error Rate (%)

» ReClean consistently outperforms the leading repair tool across different datasets

* Increasing the error rate has no/slight influence on the performance of ReClean

10 © 2024 Software AG. All rights reserved.
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Performance Evaluation

CCPP
Accuracy —
56 - 1 ReClean
Nasa res Smart Factory o é
540 [ EM-100 7.05 1 EM-50 gs2
1 ReClean [0 ReClean 850
5.35 7.00 48 4
o v 6.95 e i- == % B B
S 5.30 5 aa
n R i 10 20 40 60 80
E % 6.90 Error Rate (%)
Z 525 < WDBC
% 6.85 - o.pg | = EM-50
[ ReClean
5.20 % % % 986 A I:;L f
6.80 9.84 \§ 7
5.15 %9.32
10 20 40 60 80 10 20 40 60 80 § 9.80
Error Rate (%) Error Rate (%) ) 9.78
9.76
» ReClean consistently outperforms the leading repair tool across different datasets o

10 20 40 60 80
Error Rate (%)

* Increasing the error rate has no/slight influence on the performance of ReClean

S software~
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Performance Evaluation

Number of repair tools employed by ReClean

“M" and “Std” denote the mean and standard deviation of ten experiments and y represents the error rate

Smart Factory WDBC Nasa Wine CCPP Retail
(%) M Sud M Std M Sd M Std M Sd M S
10 3.2 153 3.1 151 29 149 4 194 32 13 41 1.3
20 26 1.01 35 120 27 126 28 0.6 27 100 44 1.11
40 25 092 27 1.00 27 09 24 091 3 .18 3.6 1.35
60 23  0.78 23 09 26 104 19 083 31 160 43 091
80 27 09 21 053 26 074 19 094 3 1.18 35 0.80

« Mean ranging from 1.9 to 4.4 across different datasets and error rates, suggesting a tailored approach to
error correction for each scenario

« Highest average number of tools used tends to occur at the lowest error rate

- ac
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Conclusion & Future Work

Conclusions

= ReClean is a RL-based method for jointly optimize data cleaning and downstream predictive tasks

= ReClean consistently outperforms baseline methods across various datasets

- ReClean selects repair tools at the tuple level, improving the granularity and precision of data cleaning

- ReClean requires 2.53 Min compared to 20.3 Min for DiffML for the Nasa data set

< AG
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Conclusions
= ReClean is a RL-based method for jointly optimize data cleaning and downstream predictive tasks
= ReClean consistently outperforms baseline methods across various datasets
- ReClean selects repair tools at the tuple level, improving the granularity and precision of data cleaning

- ReClean requires 2.53 Min compared to 20.3 Min for DiffML for the Nasa data set

Limitations
= ReClean relies on the performance of error detection tools

= REINFORCE algorithm has a relatively high variance, which makes the gradient estimates noisy
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= ReClean consistently outperforms baseline methods across various datasets
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- ReClean requires 2.53 Min compared to 20.3 Min for DiffML for the Nasa data set

Limitations
= ReClean relies on the performance of error detection tools

= REINFORCE algorithm has a relatively high variance, which makes the gradient estimates noisy

Future Work
= Explore other RL algorithms, e.g., Actor-Critic algorithm

= Extend the selection network to consider error detection and repair tools
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ReClean

REINFORCE Algorithm

« It was introduced by Ronald Williams in 1992 1. Initialize policy parameters ©

« Itis a Monte Carlo method for learning 2. For each episode:

policies in environments with sparse, delayed
rewards

1. Initialize state s

2. While the episode is not over:
* |t learns what actions will lead to the best

outcomes through trial and error 3 1. Sample action a from the policy mt(a[s; ©)

+ trying out different actions & observing 2. Take action a and observe reward r and next state s

the outcomes, then using those = 3. Store (s, a, 1) in replay buffer
observations to update the policy to
choose better actions in the future

4 Sets=-5s'

3. Compute discounted return G for each time step t in the episode

4. Calculate gradient of expected return with respect to policy parameters

5. Update policy parameters 0

6. Return policy

S software~



ReClean

Validation Set

« Validation set is used to estimate the reward

* Itis created through extracting a clean fraction from the dirty data and then randomly sample the clean fraction

Dirty Set ”

TF-IDF
Featurizat

ion

\ 4

\ 4

Error

Detector

Random
Sampler

Validation
Set

S software~



ReClean

Run-time Problem

* An "epoch" refers to one full pass through the entire
training dataset

 To estimate the loss, we need to use the repaired data
to train the target predictor

* This implies executing all repair tools on the batches
at each epoch

* Number of epoch = at least 2000

®* Executing all repair tools in each epoch highly
increases the runtime of the proposed invention

Reward

“Epoch

Stochastic Gradient Descent

Cleaning Inventory

Cleaner 1

Cleaner 2

vy Vv

|

Repair Action 1
Selection

Learnable

Cleaned
Batch

Cleaner N Validation
Set
Reward
Y
Target Loss/Reward
Predictor Estimation

TLearnabIe ‘
Loss

S software~



ReClean

Run-time Trick
* Instead of executing repair tools on the batches at each epoch

we turn it to a simple assignment operation
Before training, a list of repaired datasets by each single cleaner

Based on the selected repair tools in a batch, we replace the dirty samples with their repaired
versions obtained from the pre-prepared repaired datasets

Pre-computed repaired data

Cleaner 1 Cleaner 2 Cleaner M Validation
Set

Reward
Y p v v | v
) TF-IDF ,| Random Feaf“res »  Repair Action |Cleaned Target Loss/Reward
Dirty Set Featurization Sampler ga'tr?é » Selection e Predictor Estimation
T Learnable Learnable
Loss
. Error Indices of Detected errors

Detector
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ReClean

Run-time Trick
* Instead of executing repair tools on the batches at each epoch

we turn it to a simple assignment operation
Before training, a list of repaired datasets by each single cleaner

Based on the selected repair tools in a batch, we replace the dirty samples with their repaired
versions obtained from the pre-prepared repaired datasets

Pre-computed repaired data

- T < >
Repaired Repaired cos Repaired . -
Validation
Set

Reward
Y p v v | v
) TF-IDF ,| Random Feaf“res »  Repair Action |Cleaned Target Loss/Reward
Dirty Set Featurization Sampler ga'tr?é » Selection e Predictor Estimation
T Learnable Learnable
Loss
. Error Indices of Detected errors

Detector
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State of the Art
= ML-Oriented Data Cleaners

" Exploit ML model training and inference to select the best repair candidates

— Employ a pool of already existing error detection and repair methods

ActiveClean

BoostClean

CPClean

AL module to select data
samples which help the ML
model to converge

Ensemble learning based
on models trained on
different repaired versions
of the data

Conditional entropy of
training ML models using
different repaired versions

" Challenges

18

— Not able to combine repair candidates

— No learnable modules which can be used after deployment

— Complexity increased - additional method to select best repair candidates

— Tailored to specific ML models, e.g., CPClean limited to KNN models

© 2020 Software AG. All rights reserved. For internal use only and for Software AG Partners.
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State of the Art
» RL-based Data Preparation

. (_ Data C ti Goal state (O X
* Learn2Clean (automated sequencing) e e assincation) || @ auer, Pert:
. ( Preparation \( Cleaning )
o model-free RL technique that selects & e rr——— — T
a ML model, and a qualit
f t'qth ; timal (MM-NZSJ*(MF ) PG '
erformance metric, the optima DS
P P . ~— [ ) (Lraw j( =) p
sequence of tasks for preprocessing S——— || Feature Sefoction ) Tl *@
the data such that the quality of the = () (w= ) 0uﬂrerdefec"°n inconsistency )
. . Dirty Data [ LC ) ( B ) ( aR )( LOF )
ML model result is maximized D |l J (cc )( pc )
\ FAN 7

einforcement

\_
n Challenges T Action a " State s
=P transition Learn2Clean
o Limited to the available ML models

o High time and computational complexity

o Not able to combine repair candidates from multiple repair tools

S po
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State of the Art
» RL-based Data Preparation

= Automated Image Data Preprocessing with Deep Reinforcement Learning (2018)

— transformations such as cropping, filtering, rotating or flipping images

» Challenges

o Limited to images &
cannot be used with
tabular data

20 © 2020 Software AG. All rights reserved. For internal use only and for Software AG Partners.

Data Source,

e.g. Images

Reinforcement Learning Framework

-

Decision Maker

image

\

finish preprocessing

partially preprocessed
image and returned reward

Fully Transformed
[ ET=E
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Introducing RL

RL Elements & Example

» To use RL, the following parameters need to be defined

* Set of actions

* Set of states

* Reward function: function used to generate the
reward at a certain state

* Policy: method to decide the next action based on the
current state

* Value: It is expected long-term return with discount

state

’| Agent |

reward

, |

7

\

Environment ]4

action

CAT (Agent)

>

State (Action)

Sitting © guru99.com

A

(Reward)

Walk
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Introducing RL

Introduction to Reinforcement Learning --- Comparison of RL Methods

CRL

v

A

y

Model-Based

Model-Free

The agent learns a model of
the environment, including the
dynamics and reward function.

The agent does not learn a
model of the environment,
but instead learns from
experience.

{ Model-Based M Model-Free }

The agent can use the model
to plan and evaluate different
actions and policies.

The agent learns directly from
the rewards and transitions
experienced during
interaction with the
environment.

The agent may require more
data and computational
resources to learn the model.

The agent may require less
data and computational
resources but may also be
slower to learn.

The agent may be more
sample efficient, as it can
reuse the learned model for
multiple tasks.

The agent may be less sample
efficient, as it must learn a
new policy for each task.

< software*




Introducing RL

Comparison of RL Methods

CRL

{ Model-Based

[ ModevI—Free J

A 4

\ 4

{ Value-based J { Policy-based J

23 © 2020 Software AG. All rights reserved. For internal use only and for Software AG Partners.

Nature of the
learned function

How the learning
process is
performed

How the policy is
derived

Examples

Suitability for
continuous action
spaces

Sample efficiency

Potential for
instability or
oscillation

Applicability to

partially
observable
environments

the expected return of each
state or state-action pair.

It involves estimating the value

function, and then using it to
derive the policy.

Indirectly (from the value

function by choosing the action

with the highest value in each
state)

Q-learning, SARSA, Deep Q-
Network (DQN), Double Q-
learning, Dyna-Q, Expected
Sarsa, True Online Sarsa,
Absolute Baseline

- less suitable for continuous
action spaces

+ more sample efficient

+ more stable, as they rely on
the value function, usually
smoother than the policy

- less suitable for partially
observable environments.

Criteria | Value-Based Policy-Free

Value function that estimates

Policy function that
defines the action to
take in each state.

It involves directly
learning the policy
function.

Directly (without
learning a value
function)

REINFORCE, actor-critic
(e.g.. A2C, A3C, PPO),
Trust Region Policy
Optimization (TRPO),
Natural Policy Gradient
(NPG), Soft Actor-critic

+ more suitable for
continuous action
spaces

- less sample efficient

- less stable, as they
directly optimize the
policy, which may be
more noisy

+ more suitable for
partially observable
environments.
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