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t

Minimize validation loss

Optimization of target model on repaired data• Repair selection network

• Target model

• Repaired data

• Validation set
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𝑛,𝑚 denote the number of 

tuples within batch and the 

number of available repair tools

Predictions of the 

cleaner selector network

Regularization term 

to force exploration
Current validation loss

Moving average 

of previous losses
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Sample a data batch

Predict probabilities of repair tools

Update target model 

parameters

Update cleaner selector 

network parameters

Update moving average loss

Repair each tuple
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• Mean ranging from 1.9 to 4.4 across different datasets and error rates, suggesting a tailored approach to 

error correction for each scenario

• Highest average number of tools used tends to occur at the lowest error rate

“M” and “Std” denote the mean and standard deviation of ten experiments and γ represents the error rate
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ReClean
REINFORCE Algorithm

▪ 1. Initialize policy parameters θ

▪ 2. For each episode:

▪   1. Initialize state s

▪   2. While the episode is not over:

▪      1. Sample action a from the policy π(a|s; θ)

▪      2. Take action a and observe reward r and next state s'

▪      3. Store (s, a, r) in replay buffer

▪      4. Set s = s'

▪   3. Compute discounted return G for each time step t in the episode

▪   4. Calculate gradient of expected return with respect to policy parameters

▪   5. Update policy parameters θ

▪ 6. Return policy

• It was introduced by Ronald Williams in 1992

• It is a Monte Carlo method for learning 

policies in environments with sparse, delayed 

rewards

• It learns what actions will lead to the best 

outcomes through trial and error

• trying out different actions & observing 

the outcomes, then using those 

observations to update the policy to 

choose better actions in the future



ReClean
Validation Set

• Validation set is used to estimate the reward

• It is created through extracting a clean fraction from the dirty data and then randomly sample the clean fraction

Error 
Detector

TF-IDF 
FeaturizationDirty Set

Random 
Samplerclean Set

Dirty Set

Validation 
Set



ReClean
Run-time Problem

• An "epoch" refers to one full pass through the entire 

training dataset

• To estimate the loss, we need to use the repaired data 

to train the target predictor 

• This implies executing all repair tools on the batches 

at each epoch

• Number of epoch → at least 2000

• Executing all repair tools in each epoch highly 

increases the runtime of the proposed invention

Epoch

R
e
w

a
rd

Stochastic Gradient Descent
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Run-time Trick

• Instead of executing repair tools on the batches at each epoch

• we turn it to a simple assignment operation

• Before training, a list of repaired datasets by each single cleaner

• Based on the selected repair tools in a batch, we replace the dirty samples with their repaired 

versions obtained from the pre-prepared repaired datasets

Error 
Detector

Random 
Sampler

Repair Action 
Selection

Indices of Detected errors

Learnable

Cleaner 1 Cleaner 2 Cleaner M⋯

Pre-computed repaired data

Target 
Predictor

Loss/Reward 
Estimation

Learnable
Loss

Validation 
Set

Reward

TF-IDF 
FeaturizationDirty Set

Cleaned

 Batch

Features

Dirty

Batch
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State of the Art

▪ Exploit ML model training and inference to select the best repair candidates

− Employ a pool of already existing error detection and repair methods

▪ Challenges

− Not able to combine repair candidates

− No learnable modules which can be used after deployment

− Complexity increased → additional method to select best repair candidates

− Tailored to specific ML models, e.g., CPClean limited to KNN models
© 2020 Software AG. All rights reserved. For internal use only and for Software AG Partners.18

▪ ML-0riented Data Cleaners

ActiveClean BoostClean CPClean

AL module to select data 

samples which help the ML 

model to converge

Ensemble learning based 

on models trained on 

different repaired versions 

of the data

Conditional entropy of 

training ML models using 

different repaired versions
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▪ RL-based Data Preparation

• Learn2Clean (automated sequencing)

o model-free RL technique that selects 

a ML model, and a quality 

performance metric, the optimal 

sequence of tasks for preprocessing 

the data such that the quality of the 

ML model result is maximized

▪ Challenges

o Limited to the available ML models

oHigh time and computational complexity

oNot able to combine repair candidates from multiple repair tools



State of the Art

▪  Automated Image Data Preprocessing with Deep Reinforcement Learning (2018)

− transformations such as cropping, filtering, rotating or flipping images

© 2020 Software AG. All rights reserved. For internal use only and for Software AG Partners.20

▪ RL-based Data Preparation

▪ Challenges

o Limited to images & 

cannot be used with 

tabular data
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RL Elements & Example 

• To use RL, the following parameters need to be defined

• Set of actions

• Set of states

• Reward function: function used to generate the 

reward at a certain state

• Policy: method to decide the next action based on the 

current state

• Value: It is expected long-term return with discount
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Introduction to Reinforcement Learning --- Comparison of RL Methods

Model-Based Model-Free

The agent learns a model of 

the environment, including the 

dynamics and reward function.

The agent does not learn a 

model of the environment, 

but instead learns from 

experience.

The agent can use the model 

to plan and evaluate different 

actions and policies.

The agent learns directly from 

the rewards and transitions 

experienced during 

interaction with the 

environment.

The agent may require more 

data and computational 

resources to learn the model.

The agent may require less 

data and computational 

resources but may also be 

slower to learn.

The agent may be more 

sample efficient, as it can 

reuse the learned model for 

multiple tasks.

The agent may be less sample 

efficient, as it must learn a 

new policy for each task.

RL

Model-Based Model-Free
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Comparison of RL Methods

RL

Model-Based Model-Free

Value-based Policy-based
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