DATA ACQUISITION FOR AI

Fatemeh Nargesian, University of Rochester

OPEN DATA MOVEMENT

≡ kaggle

+ Create

Competitions

 \bigcirc Home Q Search

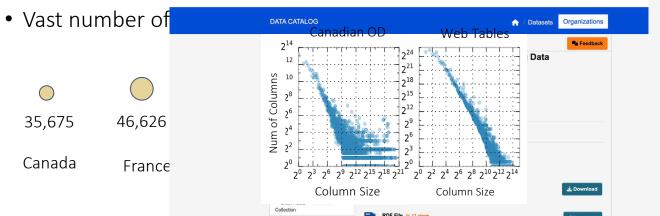
Datasets

Explore, analyze, and share quality data. Learn

- AI has become ubiquitous.
- Data-centric AI: focus has shifted from big data to good data.
- Open data repositories and data markets have become prevalent.

DATA LAKES VS. TRADITIONAL DATABASE

- Data is stored in raw files (csv, xls, xml, ...) and must be extracted
- Large number of (medium-sized) datasets
- No centralized data design or data quality control
- Sparse and non-standardized metadata for datasets
- Skewed data dis **ĐATA.GOV**



Filter by location Clear	292,134 datasets f
Enter location	232,134 Ualasels I
+	Electric Vehicle Population Data 🗠 4138 State of Washington — This dataset shows the Hybrid Electric Vehicles (PHEVs) that are curre Department
	CSV RDF JSON XML
OpenStreetMap contributors	Crime Data from 2020 to Present 🗠 311
Topics	City of Los Angeles — Starting on March 7th, 2 (LAPD) will adopt a new Records Management
Local Government - 21214	new system is
Climate - 528	CSV RDF JSON XML
Older Adults 88	FDIC Failed Bank List 🗠 2457 recent views
Energy - 21 Topic Categories	Federal Deposit Insurance Corporation — The banks. This list includes banks which have faile
Arctic - 134	CSV HTML
Ecosystem Vulnerability - 92	
Water - (89)	Dynamic Small Business Search (DSB
Human Health - 70	Small Business Administration — The Small Bu Small Business Search (DSBS) database. As a
Arctic Ocean, Sea 66	Award Management, there
Transportation - 61	HTML
Energy Infrastructure - 56	Fruit and Vegetable Prices 🗠 1999 recent
Atmospheric, Earth 53	Department of Agriculture — How much do fruit
Food Resilience - 52	prices for 153 commonly consumed fresh and p
Coastal Flooding - 42	XLS
Show More Topic Categories	Mater Vehicle Collisions - Creekee had
Dataset Type	Motor Vehicle Collisions - Crashes 1 City of New York — The Motor Vehicle Collision
geospatial - 231609	event. Each row represents a crash event. The CSV RDF JSON XML
Tags	COV INT SOON AME
(292134)	Walkability Index 🗠 1913 recent views
earth science - 77182	U.S. Environmental Protection Agency — The V
county or equivalent entity - 71495	Census 2019 block group in the U.S. based on characteristics of
oceans - 66104	ZIP CSV Esri REST HTML
noaa - 54349	Lottery Powerball Winning Numbers: E
ocean - 54313	State of New York — Go to http://on.ny.gov/1Gp
u.s. department of commerce - 47280	Powerball results and payouts. CSV RDF JSON XML
state fips code - 42137	
county fips code - 42022	Supply Chain Greenhouse Gas Emission
nesdis - 40763	U.S. Environmental Protection Agency — The c
Show More Tags	(GHG) emission factors (Factors) for 1,016 U.S
Formats	the North American Industry
XML - 143849	CSV CSV

Filter by location

DATA SEARCH AND DATA ÉNRICHMENT

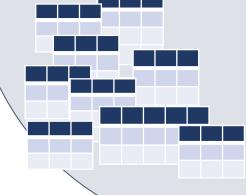
Analyzing the driving factors of GHG emission!

Enrich data scientist's work in progress with right data!

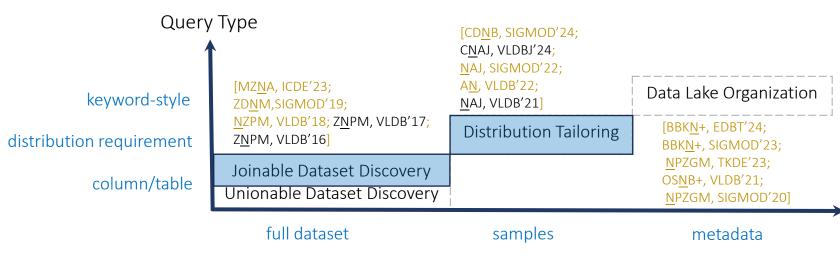
Geo	Date	Fuel	t CO2	Sector	
Cambridge	2015	electricity	2	Waste	
Worcester	2021	diesel	20	Metal	
Camden	2014	coal	12	Oil&Gas	
NYC	2019	electricity	11	Oil&Gas	
Boston	2023	diesel	8	Metal	
Rochester	2021	coal	9	Metal	

Data enrichment requires dataset discovery

- Adding novel features: joining the query dataset with some datasets in the lake.
- Adding samples: unioning the query dataset with some datasets in the lake.



DATASET DISCOVERY TASK OF FINDING RELEVANT DATASETS TO A QUERY



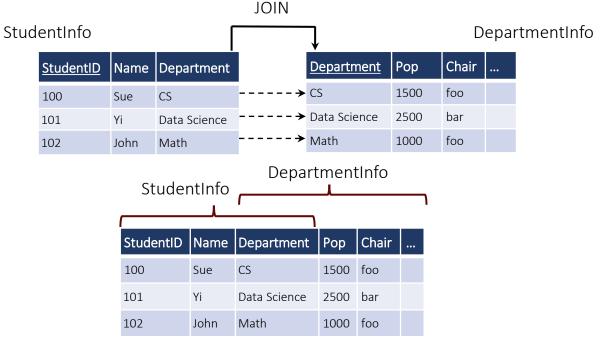
Access Level to Data Lake

JOINABLE DATASET DISCOVERY

How to enrich a query dataset with novel columns and features?

OVERVIEW: JOIN IN DATABASES

• In databases, we often know which columns to join: join on primary/foreign keys

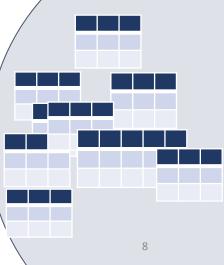


JOIN IN DATA LAKES

- Not obvious which table to join on: makes discovery a search problem
- Joins might not be possible on all query's tuples: smaller result set than query (incomplete data) query table

	Geo	Date	Fuel	t CO2	Sector		Area	Рор	Avg_age	Unemp	
٢	Barnet	2015	electricity	13	Metal	, 7	City of London	242500	43.2	2	
	City of London	2015	diesel	20	Oil&Gas	ر	Camden	142500	36.4	4	
1	Camden	2014	coal	12	Domestic		Cambridge	389600	37.3	8.5	
L	Hackney	2021	Electricity	100	Metal						
qu	ery column			JC	DIN		1				

	Geo	Date	Fuel	t CO2	Sector	Рор	Avg_age	Unemp	
٢	City of London	2015	diesel	20	Oil&Gas	242500	43.2	4	
1	Camden	2014	Coal	12	Domestic	142500	36.4	2	



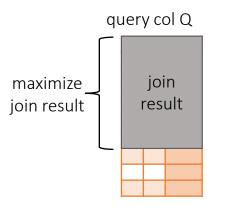
JOINABILITY MEASURE

• If columns and query are considered as sets of values, maximize set overlap of query and candidate.

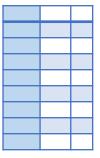
Overlap(Q, X) = $|Q \cap X|$ Containment(Q, X) = $\frac{|Q \cap X|}{|Q|}$

• Another popular set similarity measure is

Jaccard(Q, X) = $\frac{|Q \cap X|}{|Q \cup X|}$



candidate col X from a data lake



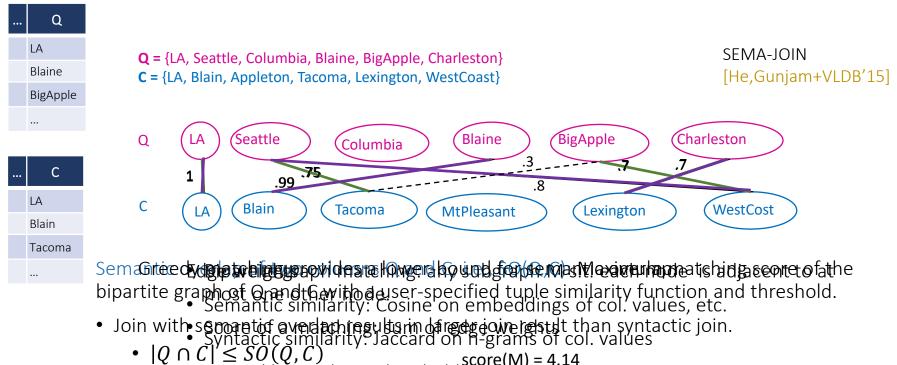
SEMANTIC JOINABILITY

• Syntactic measures become ineffective for joining dirty and heterogenous data in the wild.

uery table Overl					O	/erlap(Geo,Area) =	1				
	Date	Fuel	t CO2	Sector	Geo		Area	Рор	Avg_age	F.Unemp	Unemp
I	2015	electricity	130	Domestic	Blaine		LA	8800	43.2	-	-
	2015	diesel	200	Transport	LA	>	Big Apple	242500	36.4	62.9	4
	2014	coal	125	Domestic	NYC	*	Blain	389600	37.3	66	8.5

• Semantic overlap extends syntactic overlap for effective search despite semantic and syntactic heterogeneity of tuples.

SEMANTIC OVERLAP MEASURE

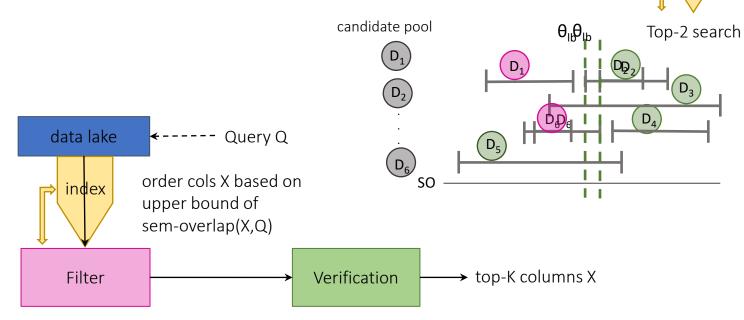


- |Q ∩ C| ≤ SO(Q, C) score(M) = 4.14
 Pruned by similarity threshold α
 Discovery requires finding joinable columns and the best way of joining them.

TOP-K SEMANTIC OVERLAP SEARCH

- Semantic overlap can be expensive
 - Bipartite graph matching: $O(n^3)$, n is col. size [Kuhn'1995]
 - Bipartite graph construction: $O(n^2)$
- Problem. Given a column *Q* and parameter *K*, find the top-*K* columns based on the semantic overlap measure.
- Search complexity: $O(mn^3)$, *n* is the size of cols. and *m* is the number of sets
- Linear scan over all datasets and computing graph matching is infeasible in practice for data lakes of tens of thousands of datasets.
- Solution. KOIOS is an exact and efficient top-*K* join search algorithm with semantic overlap.

KOIOS: FILTER-VERIFICATION FRAMEWORK



- Upper- and lower-bound filters
- A partitioning scheme for efficient filtering
- Early termination of bipartite graph matching

index

Getting edges of a bipartite graph requires |C|x|Q| tuple similarity calculations. FILTER: INCREMENTAL BOUNDS Idea. No need to build matchings for all candidate cols. Build partial greedy matches incrementally.

.6**9**m

С

stream of edges ordered based on row similarity scores descendingly: e.g., simhash LSH for Cosine of row/cell emb vectors.

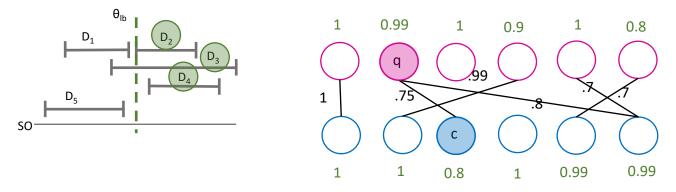
 $incremental_LB(C) = \sum edge \ weight \ in \ a \ greedy \ "partial" \ matching$ $incremental_UB(C) = \sum edge \ weight \ in \ a \ greedy \ "partial" \ matching$ $+ \ smallest \ seen \ edge \ weight \ . \ (max \ matching \ size \ - \ partial \ matching \ size)$

.99

S_{min}

SO(Q,C) = maximum matching score

VERIFICATION: EARLY TERMINATION OF MATCHING



- Hungarian algorithm assigns a valid labeling function *label: nodes* \rightarrow *R*, s.t. for two nodes *q* and *c*, label(q) + label(c) ≥ edge_weight(q, c)
- The algorithm improves on the labeling function iteratively. At each iteration:

bipartite matching score(Q, C) $\leq \sum$ node lables

upper bound(Q, C) =
$$\sum$$
 node lables

• Terminate matching prematurely.

EVALUATION

datasets statistics

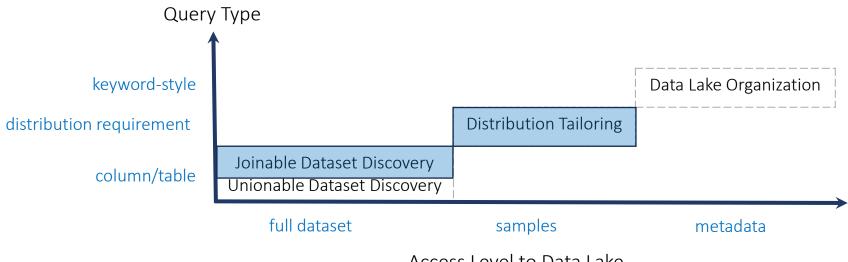
comparison to SOTA

Dataset	#Sets	Max Card.	Avg. Card.	#Unique Elements
DBLP	4,246	514	178.7	25,159
OpenData	15,636	31,901	86.4	179,830
Twitter	27,204	151	22.6	72,910
WDC	1,014,369	10,240	30.6	328,357

Dataset	KOIOS Response Time (s)	SOTA Response Time (s)	KOIOS Mem (MB)	SOTA Mem (MB)
DBLP	0.83	211	0.83	11
OpenData	18.6	101	18.6	102.5
Twitter	0.7	518	0.7	10
WDC	147	1062	147	885

- KOIOS achieves at least 5X speed up over the SOTA on massive data lakes.
- Even better speedup for medium and large queries compared to the SOTA.

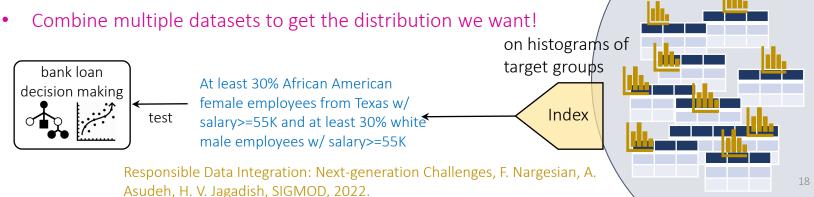
DATASET DISCOVERY



Access Level to Data Lake

DISCOVERY + DISTRIBUTION REQUIREMENT

- Scenarios with distribution requirements
 - Representation in test data
 - Seeking data with a sufficient representation to avoid overfitting
 - Selection bias leads to flawed and unreliable outcomes.
- Nearest neighbor search index on histograms of groups in datasets [Mao+, AAAI'17]
 - Non-existent results
 - Need to know the group of each tuple apriori at index time.

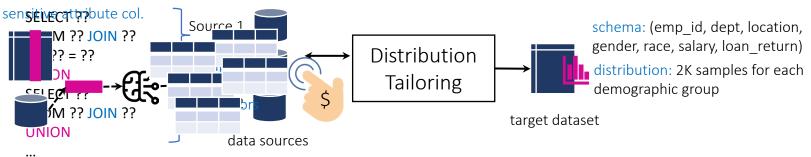


DISTRIBUTION-AWARE DISCOVERY

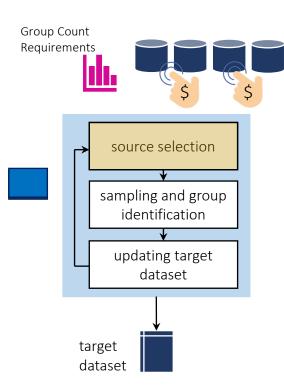
How to construct a dataset that satisfies group distribution requirements from multiple sources in a cost-effective manner?

QUERY/DATA/COST MODELS

- Target dataset: schema + count requirements specified over groups
 - Schema: description of columns
- Data sources
 - Data lake tables with the same schema as target schema
 - Project-join views over a database/data lake: join is expensive to execute, resort to tuple sampling from joins [Zhao+,SIGMOD'18; Li+,SIGMOD'16; Haas+, SIGMOD'99]
 - Other sources: crowd-sources, data providers data market setting [AN,VLDB'22]: monetary cost for purchasing data



DATA DISTRIBUTION TAILORING (DT)



- Problem. Given sources with their costs, and minimum count requirements on the groups, select samples from sources s.t. the union of samples fulfills the count requirements, while the expected total query cost is minimized.
- Solution. Iterative sampling: find a sequence of sources to sample, until distribution requirement is satisfied.
- The cost optimality depends on how much DT knows about group distributions in sources.

DT STRATEGIES FOR (UN)KNOWN GROUP DISTRIBUTIONS

• Known distributions

- Dynamic programming solution
 - Pseudo-polynomial time and space complexity
 - Not practical for large number of groups and count requirements
- Optimal strategy for binary groups and sources with equal costs
- Practical strategy for m-ary groups and sources with arbitrary costs
- Unknown distributions
 - Budget allocation strategy based on multi-armed bandit

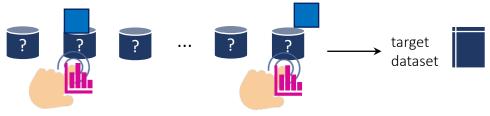
Tailoring Data Source Distributions for Fairness-aware Data Integration. F. Nargesian, A. Asudeh, H. V. Jagadish, VLDB, 2021.Data Distribution Tailoring Revisited: Cost-Efficient Integration of Representative Data.J. Chang, B. Cui, F. Nargesian, A. Asudeh. H. V. Jagadish, VLDBJ, 2024.

student

UR Undergrad student

UNKOWN DISTRIBUTIONS

No information about group distribution



- Learning group distribution and source goodness as we sample.
- Solution. Applying Multi-armed Bandit (MAB)

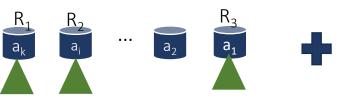
24

[Sutton&Barto, 1998]

OVERVIEW: MULTI-ARMED BANDIT

- Given k arms a time horizon (budget) T, at each timestep t=1,...,T, we choose an arm, and receive a real-valued reward R_t.
- Reward depends on the arm and is iid.
- Distributions of rewards are unknown.
- Nevertheless, we must maximize our total reward.
- As selecting arms, form estimates for an arm's value: e.g., the average of sample rewards from the arm.

observed rewards for a_1 : 3, 10, 2 arm-value $(a_1) = 5$



total reward

OVERVIEW: MULTI-ARMED BANDIT

• Maximize the total reward.

- Both try arms to learn their values (explore) and prefer those that appear best (exploit).
 - Never stop exploring; maybe explore less with time; or not!
- Regret is the opportunity loss for one step: difference of obtained reward and optimal reward
- Goal. Minimize total regret ~ maximize cumulative reward Regret(T) = OPT reward @T – Planner reward @T

observed rewards so far for t=1,..,4: 3, 10, 5, 10 should have pulled the arm with reward 10 all along regret: (10-3)+(10-10)+(10-5)+(10-10) = 12

[Sutton&Barto, 1998]

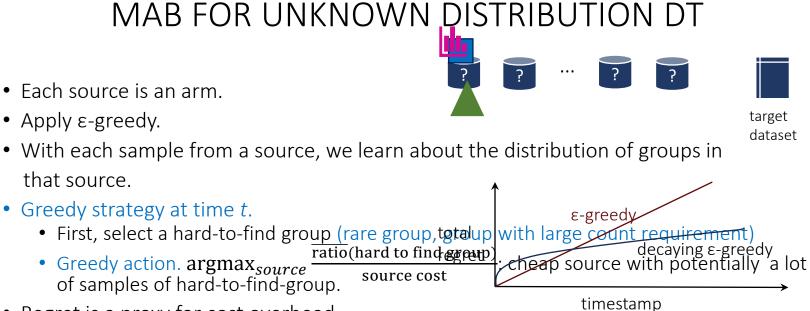
OVERVIEW: EXPLORATION, EXPLOITATION, AND REGRET

- Explore at time t: select a random arm.
- Exploit at time t: select the arm with the best estimated value so far (greedy).
- ϵ -greedy. At each step explore with prob. ϵ (exploration rate) and exploit with prob. (1- ϵ)
 - Linear regret
 - Assume perfect estimates. We potentially pull imperfect arm with ε prob., resulting in expected ε.T regret.

estimated action-values: 2

- Decaying exploration rate. More exploration at the beginning.
 - E.g., if new to a city, extensively explore restaurants at the beginning, explore less later.
 - Regret $O(T^{2/3} \log T^{1/3})$
 - Can be brought down by Upper Confidence Bound (UCB) to $O(T^{1/2}log T^{1/2})$

•••



- Regret is a proxy for cost overhead.
- Regret. DT with ε -greedy strategy with exploration rate $\sqrt[3]{\ln t / t}$ at time t has regret of $O\left(t^{\frac{2}{3}}\log t^{\frac{1}{3}}\right)$ -- for sources with equal costs and strategy ratiocall.

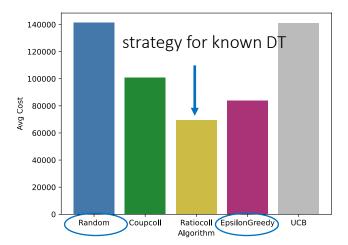
Data Distribution Tailoring Revisited: Cost-Efficient Integration of Representative Data. J. Chang, B. Cui, F. Nargesian, A. Asudeh. H. V. Jagadish, VLDBJ, 2024.

PRACTICAL STRATEGY

- Explore-then-Exploit
 - Crudely approximate budget *T* ≈ *∑* group_count_requirements
 - Randomly sample sources for αT iterations
 - Performing all explorations at the beginning allows sampling to be done in batches and in parallel!
 - Be greedy in the rest of time steps.

EVALUATION: KNOWN AND UNKNOWN DISTRIBUTIONS

Known/Unknown DT on Flights dataset



 ε-greedy outperforms random sampling and is in competition with strategy for. Known distribution.

PLUTUS: UNDERSTANDING DT FOR ML

• DT is available in Apache SystemDS (open-source SystemML from IBM: declarative ML system on Spark)

Understanding Distribution Tailoring for Machine Learning. J. Chang, C. Dionysio, F. Nargesian, M. Boehm, SIGMOD, 2024.

KNOWN DISTRIBUTIONS: BINARY GROUPS AND EQUI-COST

G

31

G₂

- Given. The ratio of each group in each source. Same cost for all sources.
- Algorithm. At each iteration until all requirements are satisfied:
 - From unsatisfied groups, pick a group to prioritize.
 - For that group pick the cheapest sources for acquiring samples of that group.
 - Sample from that source; update target dataset; update remaining group requirements.
- Cheapest source for a group: source that has the highest ratio of that group
- Group to prioritize/sample for: group that is minority in its best source

EQUI-COST BINARY DT: SAMPLE FOR MINORITY GROUP

5% of (G_1) and 95% of (G_2)

cost=1

 S_2

• Requirement. Collect at least one tuple of each group.

- Expected cost of getting one sample of G_1 from S_1 is 100/20=5 and from S_2 is 100/5=20.
 - Best source for getting G_1 is S_1 . Similarly, best source for G_2 is S_2 .
- G_1 is minority in its best source (S_1 has 20% of G_1 , S_2 only has 95% of G_2) \rightarrow Pick G_1
 - Piggybacking: as we are sampling for G_1 , we can fulfill the count requirements of G_2 with no cost.
- Proof by contradiction.

20% of G_1 and 80% of G_2

cost=1

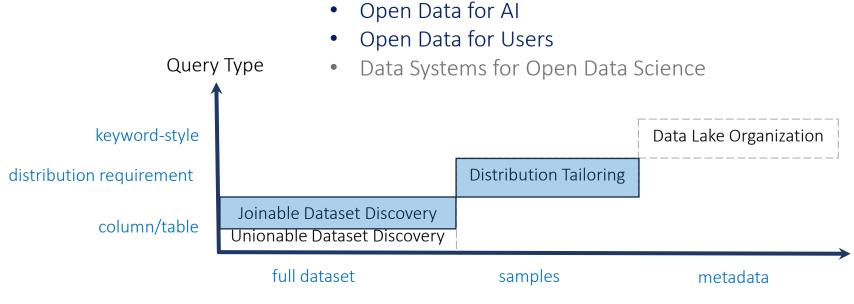
No need to separately sample for G_2 , req. satisfied

sample from S_1 until got one tuple of G_1

sample from S_2 until got one tuple of G_2

Need to sample another source to get G_1

OUTLOOK



Access Level to Data Lake

OPEN DATA AND AI

- Sample discovery
 - Discovering novel samples by unionable dataset discovery [NZPM, VLDB'18]
- Feature discovery
 - Pushing down feature selection measures into join discovery
 - More interesting (and rare) relationships: causal dataset discovery
- LLMs and dataset discovery
 - Dataset understanding and training data generation
- Dataset discovery for LLMs
 - Semantic/query-based nearest neighbor search indexes for vector DBs

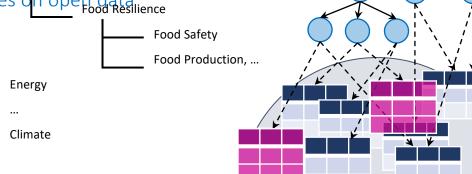
	_	

CAUSAL DATASET DISCOVERY

- Consider tables Q and T. Candidate columns $X \in Q$ and $Y \in T$ have a correlation link over $Q \bowtie_{K=K'} T$, if their correlation after the join is higher than a threshold θ .
- A correlation link can potentially be
 - X causes Y over join $Q \bowtie_{K=K'} T$
 - Y causes X over join $Q \bowtie_{K=K'} T$
 - No causal relation exists between X and Y
- Problem. Given a query table Q and a data lake of tables L, find all tables CEL such that Q and C have at least one causal link over their join.
- Challenges. Sparsity of causal relation and limited training data for fine-tuning
- Results.
 - Role prompting + CoT + Socratic prompting + fine tuning performs the best.
 - LLMs have potential to learn and generalize causality.

OPEN DATA AND USERS

- Metadata, search, query writing
 - Metadata standardization and taxonomy induction in domains such as social sciences
- User interfaces for search
 - Constructing abstract structures for navigation and exploration [NZGPM, SIGMOD'20&TKDE'24]
 - Assisting users with debugging results and consequently their own information needs
 - Dealing with heterogenous data by creating abstractions over data
- Discovery with private queries on open data rood Resilience



ACKNOWLEDGEMENT

- Abolfazl Asudeh (UIC)
- Nikolaus Augsten (U. Salzburg)
- Matthias Boehm (TU Berlin)
- H. V. Jagadish (U. Michigan)
- Renée J. Miller (NEU)
- Felix Naumann (HPI)
- Ken PU (UOIT)
- Divesh Srivastava (AT&T)
- Eric Zhu (MSR)

- Leon Bornemann (HPI, PhD student)
- Jiwon Chang (UR, PhD student)
- Tianji Cong (U. Michigan, PhD student)
- Yurong Liu (UR, undergrad)
- Pranay Mundra (UR, MSc.)
- Aidan Sciortino (UR, undergrad)
- Zhengbin Tao (UR, PhD student)
- Draco Xu (UR, undergrad)
- Mengqi Zhang (UR, PhD student)
- Jianhao Zhang (UR, MSc.)

Code and data: github.com/DataIntelligenceCrew

THANKS.