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OPEN DATA MOVEMENT
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• AI has become ubiquitous.

• Data-centric AI: focus has shifted from big data to good data. 

• Open data repositories and data markets have become prevalent.
• Improving governments
• Empowering citizens
• Solving big public problem
• After Web, open data is the biggest database that citizens have access to. 
• Focus of this talk: tabular and structured data



• Data is stored in raw files (csv, xls, xml, …) and must be extracted. 

• Large number of (medium-sized) datasets

• No centralized data design or data quality control
• Sparse and non-standardized metadata for datasets

• Skewed data distribution on size, availability of metadata, etc.

• Vast number of topics: makes open data appealing.
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DATA LAKES VS. TRADITIONAL DATABASES

Canadian OD Web Tables

Column Size Column Size

N
um

 o
f C

ol
um

ns



Geo Date Fuel t CO2 Sector …

Cambridge 2015 electricity 2 Waste

Worcester 2021 diesel 20 Metal

Camden 2014 coal 12 Oil&Gas

NYC 2019 electricity 11 Oil&Gas

Boston 2023 diesel 9 Metal
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DATA SEARCH AND DATA ENRICHMENT

Geo ?

Cambridge ?

Worcester ?

Camden ?

NYC ?

Boston ?

Analyzing the driving factors of GHG emission!

Geo Date Fuel t CO2 Sector …

Cambridge 2015 electricity 2 Waste …

Worcester 2021 diesel 20 Metal …

Camden 2014 coal 12 Oil&Gas …

NYC 2019 electricity 11 Oil&Gas …

Boston 2023 diesel 8 Metal …

Rochester 2021 coal 9 Metal …

… ... … … … …

Enrich data scientist’s work in progress 
with right data!

Data enrichment requires dataset discovery
• Adding novel features: joining the query 

dataset with some datasets in the lake. 
• Adding samples: unioning the query dataset 

with some datasets in the lake. 



DATASET DISCOVERY
TASK OF FINDING RELEVANT DATASETS TO A QUERY

Data Lake Organization

Distribution Tailoring

Joinable Dataset Discovery
Unionable Dataset Discovery
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Access Level to Data Lake

full dataset samples metadata

keyword-style

distribution requirement

column/table

Query Type

[MZNA, ICDE’23; 
ZDNM,SIGMOD’19;
NZPM, VLDB’18; ZNPM, VLDB’17;
ZNPM, VLDB’16] 

[BBKN+, EDBT’24; 
BBKN+, SIGMOD’23; 
 NPZGM, TKDE’23; 
OSNB+, VLDB’21;
 NPZGM, SIGMOD’20] 

[CDNB, SIGMOD’24; 
CNAJ, VLDBJ’24;
NAJ, SIGMOD’22; 
AN, VLDB’22;
NAJ, VLDB’21]



JOINABLE DATASET DISCOVERY

How to enrich a query dataset with novel columns and features? 



• In databases, we often know which columns to join: join on primary/foreign keys
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StudentID Name Department Pop Chair …

100 Sue CS 1500 foo

101 Yi Data Science 2500 bar

102 John Math 1000 foo

OVERVIEW: JOIN IN DATABASES

JOIN

StudentID Name Department

100 Sue CS

101 Yi Data Science

102 John Math

Department Pop Chair …

CS 1500 foo

Data Science 2500 bar

Math 1000 foo

StudentInfo

DepartmentInfo

DepartmentInfo

StudentInfo



• Not obvious which table to join on: makes discovery a search problem 

• Joins might not be possible on all query’s tuples: smaller result set than query (incomplete 
data)
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Geo Date Fuel t CO2 Sector …

Barnet 2015 electricity 130 Metal

City of London 2015 diesel 200 Oil&Gas

Camden 2014 coal 125 Domestic

Hackney 2021 Electricity 100 Metal

Area Pop Avg_age Unemp …

City of London 242500 43.2 2

Camden 142500 36.4 4

Cambridge 389600 37.3 8.5

…

Geo Date Fuel t CO2 Sector …

Barnet 2015 electricity 13 Metal

City of London 2015 diesel 20 Oil&Gas

Camden 2014 coal 12 Domestic

Hackney 2021 Electricity 100 Metal

query column

Geo Date Fuel t CO2 Sector Pop Avg_age Unemp …

City of London 2015 diesel 20 Oil&Gas 242500 43.2 4

Camden 2014 Coal 12 Domestic 142500 36.4 2

query table

JOIN IN DATA LAKES

JOIN

?



candidate col X 
from a data lake

• If columns and query are considered as sets of values, 
maximize set overlap of query and candidate.

• Another popular set similarity measure is

Overlap Q, X = 𝑄𝑄 ∩ 𝑋𝑋

Containment Q, X =
𝑄𝑄 ∩ 𝑋𝑋

|𝑄𝑄|

JOINABILITY MEASURE
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join 
result

maximize 
join result

[ZDNPM,SIGMOD’19; ZNPM,VLDB’16]

query col Q

Jaccard Q, X =
𝑄𝑄 ∩ 𝑋𝑋

|𝑄𝑄 ∪ 𝑋𝑋|



• Syntactic measures become ineffective for joining dirty and heterogenous data in the wild. 

• Semantic overlap extends syntactic overlap for effective search despite semantic and 
syntactic heterogeneity of tuples. 

SEMANTIC JOINABILITY
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… Date Fuel t CO2 Sector Geo

2015 electricity 130 Domestic Blaine

2015 diesel 200 Transport LA

2014 coal 125 Domestic NYC

Area Pop Avg_age F.Unemp Unemp …

LA 8800 43.2 - -

Big Apple 242500 36.4 62.9 4

Blain 389600 37.3 66 8.5

…

Overlap(Geo,Area) =  1 

KOIOS: Top-K Semantic Overlap Set Search, P. Mundra, J. Zhang, F. Nargesian, N. Augsten, ICDE, 2023.   

query table



• Bipartite graph matching: any subgraph M s.t. each node  is adjacent to at 
most one other node.

• Score of a matching: sum of edge weights
score(M) = 4.14

Semantic overlap of two columns Q and C, i.e., SO(Q,C): Maximum matching score of the 
bipartite graph of Q and C with a user-specified tuple similarity function and threshold. 

• Join with semantic overlap results in larger join result than syntactic join. 
• 𝑄𝑄 ∩ 𝐶𝐶 ≤ 𝑆𝑆𝑆𝑆 𝑄𝑄,𝐶𝐶

• Discovery requires finding joinable columns and the best way of joining them. 

Edge weights 

• Semantic similarity: Cosine on embeddings of col. values, etc.

• Syntactic similarity: Jaccard on n-grams of col. values

• Pruned by similarity threshold 𝛼𝛼
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Q = {LA, Seattle, Columbia, Blaine, BigApple, Charleston}
C = {LA, Blain, Appleton, Tacoma, Lexington, WestCoast}

… Q

LA

Blaine

BigApple

…

SEMANTIC OVERLAP MEASURE

… C

LA

Blain

Tacoma

…

C

Q

LA Blain Tacoma MtPleasant Lexington WestCost

LA CharlestonSeattle Columbia Blaine BigApple

1 .8
.7

.99
.7.751 .75

.99
.7 .7.3

SEMA-JOIN 
[He,Gunjam+VLDB’15]

Greedy matching provides a lower-bound for semantic overlap. 



TOP-K SEMANTIC OVERLAP SEARCH

• Semantic overlap can be expensive
• Bipartite graph matching: O(n3), n is col. size [Kuhn’1995]

• Bipartite graph construction: O(n2)

• Problem. Given a column Q and parameter K, find the top-K columns based on 
the semantic overlap measure.   

• Search complexity: O(mn3), n is the size of cols. and m is the number of sets

• Linear scan over all datasets and computing graph matching is infeasible in 
practice for data lakes of tens of thousands of datasets. 

• Solution. KOIOS is an exact and efficient top-K join search algorithm with semantic 
overlap.

12



θlb 

data lake

KOIOS: FILTER-VERIFICATION FRAMEWORK
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Filter Verification top-K columns X 

order cols X based on 
upper bound of 
sem-overlap(X,Q) 

index

Query Q D5

D1

SO

D3

D4

D1

D2
.
.
.

D6

candidate pool Top-2 search

D6D6

• Upper- and lower-bound filters
• A partitioning scheme for efficient filtering

• Early termination of bipartite graph matching

D2D2

θlb 

index



s2⩾s3⩾s4⩾...

C

Getting edges of a bipartite 
graph requires |C|x|Q| 
tuple similarity calculations. 
Idea. No need to build 
matchings for all candidate 
cols. Build partial greedy 
matches incrementally. 

smin⩾s4⩾...

1
.99

.8 .7.7.75

FILTER: INCREMENTAL BOUNDS
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Q

ANN 
index

𝑆𝑆𝑆𝑆 𝑄𝑄,𝐶𝐶 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝐿𝐿𝐿𝐿 𝐶𝐶 = �𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 “𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑈𝑈𝑈𝑈 𝐶𝐶 = �𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 “𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

     + smallest seen edge weight  . (max matching size  - partial matching size)

stream of edges ordered 
based on row similarity 
scores descendingly: e.g., 
simhash LSH for Cosine of 
row/cell emb vectors. 

smin
sminsmin

s1⩾s2⩾s3⩾s4⩾...

1
.99

.65 .8

smallest seen edge weight
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VERIFICATION: EARLY TERMINATION OF MATCHING

• Hungarian algorithm assigns a valid labeling function label: nodes→R, s.t. for two nodes q and c,  
label q + label c ≥ edge_weight q, c

• The algorithm improves on the labeling function iteratively. At each iteration:

bipartite matching score Q, C ≤�node lables

upper bound(Q, C)  = �node lables

• Terminate matching prematurely. 

D5

D1

θlb 

SO

D2

D3

D4

1
.99

.8
.7.7.75

1

1

0.99

1

1 10.9

0.8 1

0.8

0.99 0.99

q

c



• KOIOS achieves at least 5X speed up over the SOTA on massive data lakes.

• Even better speedup for medium and large queries compared to the SOTA. 

EVALUATION
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Dataset KOIOS 
Response 
Time (s)

SOTA 
Response 
Time (s)

KOIOS  Mem 
(MB)

SOTA  
Mem 
(MB)

DBLP 0.83 211  0.83 11

OpenData 18.6 101 18.6 102.5

Twitter 0.7 518 0.7 10

WDC 147 1062 147 885

comparison to SOTA

Dataset #Sets Max 
Card.

Avg. 
Card.

#Unique
Elements 

DBLP 4,246 514 178.7 25,159

OpenData 15,636 31,901 86.4 179,830

Twitter 27,204 151 22.6 72,910

WDC 1,014,369 10,240 30.6 328,357 

datasets statistics



DATASET DISCOVERY

Data Lake Organization

Distribution Tailoring

Joinable Dataset Discovery
Unionable Dataset Discovery
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Access Level to Data Lake

full dataset samples metadata

keyword-style

distribution requirement

column/table

Query Type



• Scenarios with distribution requirements
• Representation in test data
• Seeking data with a sufficient representation to avoid overfitting
• Selection bias leads to flawed and unreliable outcomes. 

• Nearest neighbor search index on histograms of groups in datasets [Mao+,AAAI’17]
• Non-existent results
• Need to know the group of each tuple apriori at index time. 

• Combine multiple datasets to get the distribution we want! 

DISCOVERY + DISTRIBUTION REQUIREMENT
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At least 30% African American 
female employees from Texas w/ 
salary>=55K and at least 30% white 
male employees w/ salary>=55K 

test

bank loan
decision making

Index

on histograms of 
target groups

Responsible Data Integration: Next-generation Challenges, F. Nargesian, A. 
Asudeh, H. V. Jagadish, SIGMOD, 2022. 



DISTRIBUTION-AWARE DISCOVERY 

How to construct a dataset that satisfies group distribution requirements from 
multiple sources in a cost-effective manner?



QUERY/DATA/COST MODELS

• Target dataset: schema + count requirements specified over groups
• Schema: description of columns

• Data sources
• Data lake tables with the same schema as target schema
• Project-join views over a database/data lake: join is expensive to execute, resort to tuple sampling 

from joins [Zhao+,SIGMOD’18; Li+,SIGMOD’16; Haas+, SIGMOD’99]

• Other sources: crowd-sources, data providers – data market setting [AN,VLDB’22]: monetary cost for  
purchasing data 

data sources

Distribution 
Tailoring

$
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distribution: 2K samples for each 
demographic group

schema: (emp_id, dept, location, 
gender, race, salary, loan_return)

SELECT ?? 
FROM ?? JOIN ?? 
ON ?? = ?? 
UNION
SELECT ?? 
FROM ?? JOIN ?? 
UNION
…

Source 1

Source 2
target dataset

group classified 
by a model or 
annotators

sensitive attribute col.



DATA DISTRIBUTION TAILORING (DT)

21

source selection

sampling and group 
identification

updating target 
dataset

target 
dataset

• Problem. Given sources with their costs, and minimum count 
requirements on the groups, select samples from sources s.t. 
the union of samples fulfills the count requirements, while 
the expected total query cost is minimized. 

• Solution. Iterative sampling: find a sequence of sources to 
sample, until distribution requirement is satisfied. 

• The cost optimality depends on how much DT knows about 
group distributions in sources. 

Group Count 
Requirements

$ $



• Known distributions
• Dynamic programming solution

• Pseudo-polynomial time and space complexity
• Not practical for large number of groups and count requirements

• Optimal strategy for binary groups and sources with equal costs
• Practical strategy for m-ary groups and sources with arbitrary costs

• Unknown distributions
• Budget allocation strategy based on multi-armed bandit

• Known distributions
• Dynamic programming solution

• Pseudo-polynomial time and space complexity
• Not practical for large number of groups and count requirements

• Optimal strategy for binary groups and sources with equal costs
• Practical strategy for m-ary groups and sources with arbitrary costs

• Unknown distributions
• Budget allocation strategy based on multi-armed bandit

DT STRATEGIES FOR (UN)KNOWN 
GROUP DISTRIBUTIONS

22

Tailoring Data Source Distributions for Fairness-aware Data Integration.  F. Nargesian, A. 
Asudeh, H. V. Jagadish, VLDB, 2021.  
Data Distribution Tailoring Revisited: Cost-Efficient Integration of Representative Data. 
J. Chang, B. Cui, F. Nargesian, A. Asudeh. H. V. Jagadish, VLDBJ, 2024. 



UNKOWN DISTRIBUTIONS

• Learning group distribution and source goodness as we sample.

• Solution. Applying Multi-armed Bandit (MAB)
 

? ? ? ? ?
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target 
dataset

…

UR PhD 
student

UR Undergrad  
student

No information about group distribution



…

OVERVIEW: MULTI-ARMED BANDIT

• Given k arms a time horizon (budget) T, at each 

timestep t=1,...,T, we choose an arm, 

and receive a real-valued reward Rt. 
• Reward depends on the arm and is iid. 

• Distributions of rewards are unknown. 

• Nevertheless, we must maximize our total reward. 
• As selecting arms, form estimates for an arm’s value: e.g., the average of sample 

rewards from the arm. 

24

ak ai a2 a1

R3R2R1

[Sutton&Barto, 1998]

observed rewards for a1: 3, 10, 2
arm-value(a1) = 5

total reward



OVERVIEW: MULTI-ARMED BANDIT

• Maximize the total reward. 

• Both try arms to learn their values (explore) and prefer those that appear best (exploit). 
• Never stop exploring; maybe explore less with time; or not!

• Regret is the opportunity loss for one step: difference of obtained reward and optimal 
reward

• Goal. Minimize total regret ~ maximize cumulative reward
Regret T = OPT reward @T − Planner reward @T

25

[Sutton&Barto, 1998]

…ak ai a2 a1
R3

R2R1

observed rewards so far for t=1,..,4: 3, 10, 5, 10
should have pulled the arm with reward 10 all along
regret: (10-3)+(10-10)+(10-5)+(10-10) = 12 



OVERVIEW: EXPLORATION, EXPLOITATION, 
AND REGRET

• Explore at time t: select a random arm. 

• Exploit at time t: select the arm with the best estimated value so far (greedy).

• ε-greedy. At each step explore with prob. ε (exploration rate) and exploit with prob. (1-ε)
• Linear regret

• Assume perfect estimates. We potentially pull imperfect arm with ε prob., resulting 
in expected ε.T regret.  

• Decaying exploration rate. More exploration at the beginning.  
• E.g., if new to a city, extensively explore restaurants at the beginning, explore less later. 
• Regret O(T2/3log T1/3)
• Can be brought down by Upper Confidence Bound (UCB) to O(T1/2log T1/2)

26[Sutton&Barto, 1998]

estimated action-values:    2    10     5        7
…ak ai a2 a1
…ak ai a2 a1

estimated action-values:    2    10     5        7



MAB FOR UNKNOWN DISTRIBUTION DT

• Each source is an arm. 
• Apply ε-greedy. 
• With each sample from a source, we learn about the distribution of groups in 
    that source. 
• Greedy strategy at time t. 

• First, select a hard-to-find group (rare group, group with large count requirement) 
• Greedy action. argmax𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

ratio(hard to find group)
source cost

: cheap source with potentially  a lot 
of samples of hard-to-find-group. 

• Regret is a proxy for cost overhead. 
• Regret. DT with ε-greedy strategy with exploration rate 3 ln 𝑡𝑡 /𝑡𝑡 at time t has regret of 
𝑂𝑂 t

2
3 log t

1
3  -- for sources with equal costs and strategy ratiocoll. 

27

? ? ? ?

target 
dataset

…

Data Distribution Tailoring Revisited: Cost-Efficient Integration of Representative Data. 
J. Chang, B. Cui, F. Nargesian, A. Asudeh. H. V. Jagadish, VLDBJ, 2024. 

timestamp

total 
regret

ε-greedy

decaying ε-greedy



PRACTICAL STRATEGY

• Explore-then-Exploit
• Crudely approximate budget T ≈ ∑ group_count_requirements 
• Randomly sample sources for ⍺T iterations 

• Performing all explorations at the beginning allows sampling to be done in 
batches and in parallel! 

• Be greedy in the rest of time steps. 

28



EVALUATION: KNOWN AND UNKNOWN 
DISTRIBUTIONS

29

Known/Unknown DT on Flights dataset 

• ε-greedy outperforms random sampling and is in 
competition with strategy for. Known distribution. 

strategy for known DT



PLUTUS: UNDERSTANDING DT FOR ML

• DT is available in Apache SystemDS (open-source SystemML from IBM: declarative 
ML system on Spark)

30
Understanding Distribution Tailoring for Machine Learning. 
J. Chang, C. Dionysio, F. Nargesian, M. Boehm, SIGMOD, 2024. 



KNOWN DISTRIBUTIONS: 
BINARY GROUPS AND EQUI-COST

• Given. The ratio of each group in each source. Same cost for all sources. 

• Algorithm. At each iteration until all requirements are satisfied: 
• From unsatisfied groups, pick a group to prioritize.
• For that group pick the cheapest sources for acquiring samples 
    of that group.
• Sample from that source; update target dataset; 
    update remaining group requirements. 

• Cheapest source for a group: source that has the highest ratio of that group

• Group to prioritize/sample for: group that is minority in its best source

G4

G5 Gi

…

G1G2G3

G5

G1

31Tailoring Data Source Distributions for Fairness-aware Data Integration.  F. Nargesian, A. Asudeh, H. V. Jagadish, VLDB, 2021.   



• Requirement. Collect at least one tuple of each group. 
• Expected cost of getting one sample of G1 from S1 is 100/20=5 

and from S2 is 100/5=20.  
• Best source for getting G1 is S1. Similarly, best source for G2 is S2. 

• G1 is minority in its best source (S1 has 20% of G1, S2 only has 95% 
of G2) → Pick G1

• Piggybacking: as we are sampling for G1, we can fulfill the 
count requirements of G2 with no cost.

• Proof by contradiction. 

EQUI-COST BINARY DT: 
SAMPLE FOR MINORITY GROUP

S1 S220% of  G1  and 80% of G2 5% of  G1 and 95% of  G2

32

cost=1 cost=1
sample from S1 until 
got one tuple of G1

No need to separately 
sample for G2, req. 
satisfied

Need to sample 
another source to get G1 

sample from S2 until 
got one tuple of G2



OUTLOOK

Data Lake Organization

Distribution Tailoring

Joinable Dataset Discovery
Unionable Dataset Discovery

33

Access Level to Data Lake

full dataset samples metadata

keyword-style

distribution requirement

column/table

Query Type

• Open Data for AI
• Open Data for Users
• Data Systems for Open Data Science



• Sample discovery
• Discovering novel samples by unionable dataset discovery [NZPM, VLDB’18]

• Feature discovery
• Pushing down feature selection measures into join discovery
• More interesting (and rare) relationships: causal dataset discovery

• LLMs and dataset discovery
• Dataset understanding and training data generation

• Dataset discovery for LLMs
• Semantic/query-based nearest neighbor search indexes for vector DBs  

34

OPEN DATA AND AI



• Consider tables Q and T. Candidate columns 𝑋𝑋∈Q and 𝑌𝑌∈T have a correlation link over 
Q ⋈K=K’ T, if their correlation after the join is higher than a threshold 𝜃𝜃. 

• A correlation link can potentially be 
• X causes Y over join Q ⋈K=K’ T
• Y causes X over join Q ⋈K=K’ T
• No causal relation exists between X and Y 

• Problem. Given a query table Q and a data lake of tables L, find all tables C∈L such that 
Q and C have at least one causal link over their join. 

• Challenges. Sparsity of causal relation and limited training data for fine-tuning

• Results. 
• Role prompting + CoT + Socratic prompting + fine tuning performs the best.
• LLMs have potential to learn and generalize causality. 

CAUSAL DATASET DISCOVERY

35Causal Dataset Discovery with Large Language Models. J. Liu, S. Sun, F. Nargesian HILDA@SIGMOD, 2024. 

correlation/causation



36

OPEN DATA AND USERS

• Metadata, search, query writing
• Metadata standardization and taxonomy induction in domains such as social sciences

• User interfaces for search 
• Constructing abstract structures for navigation and exploration [NZGPM, SIGMOD’20&TKDE’24]

• Assisting users with debugging results and consequently their own information needs
• Dealing with heterogenous data by creating abstractions over data

• Discovery with private queries on open data

Health

 Water

 Food Resilience

  Food Safety

  Food Production, …

Energy

…

Climate
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