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SQL and LLMs Vows
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“I will help your users write SQL queries”  [Veltri et al, ICDE 2023]

“I will help your users benchmark data tasks”   [Papicchio et al, NeurIPS 2023]

“We will answer queries jointly”   [Saeed et al, EDBT 2024]
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Table Retrieval

Table QA

[Badaro et al, 2023]



• Text to SQL: example of NL text to code

• LLMs do very well… according to results on public benchmarks 
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Please translate in SQL query:

“Give me all the employees with 
salary above 2k”

for the schema

Emp(name, age, salary)

“Select name
From Emp

Where salary>2000”

Semantic Parsing



Spider: Semantic Parsing and Text-to-SQL Challenge 

• Manually annotated corpus [EMNLP 2018]
5.7k (NL Question, SQL query) on 200 databases
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https://yale-lily.github.io/spider

https://yale-lily.github.io/spider


Can we adopt these models?
• Solutions are validated on public benchmark

• Risks:

• Overfit – systems optimized for queries in this dataset

• Contamination - examples are on the Web

• What if I need to pick a model for my proprietary data? 
Will it work? How well?
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Custom benchmark on user data

• Given proprietary table D

• Automatically rank existing LLMs on D for SM
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Problem for any tabular data task with (NL text, tabular data)

User data



• LLMs can do it… according to some papers

• No established benchmark 
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Please give me all the employees 
with salary above 2k sorted by 
name

for dataset:
Emp(name, age, salary)
(Mike, 33, 2900)
(Laure, 45, 3200)
(John, 21, 1900)

“Laure, Mike”

Table Question Answering



Custom benchmark on user data
• Given proprietary table D

• Automatically rank existing LLMs on T for data-task
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User data

Semantic Parsing

Table QA



QATCH: Query-Aided TRL Checklist

• Given proprietary data D and task T

• Create a set of tests QT on D (NL question, result GT data) 

• Measure the quality of LLMs on QT and D
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Generate 
Tests

NL 
question Predict

Model Output

Ground Truth

Compute 
Metrics

QATCH LLM

Input data

How to get ‘good’ 
tests?



SQL to the rescue 
• Query generation to create (NL question, result GT data) pairs

• Focus on query complexity: 1 to n attributes/conditions, …

• Simple text: no ambiguity, no failure, plain English
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Input 
data D NL question

Ground Truth = 
SQL (input data D)



QATCH: Query-Aided TRL Checklist
• Given proprietary data D and task T

• Create a set of tests QT on D (NL question, result GT data) 

• Measure the quality of LLMs on QT and D
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Generate 
Tests

NL question
Predict

Model Output

Ground Truth

Compute 
Metrics

QATCH LLM

Input data

Focus on dataSim(SQL script 1, SQL script 2)X



Results for TQA - ChatGPT
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TQA

Failure!
Proprietary 

datasets
ECOMMERCE



Results for TQA - all tests, models

Synthetic examples 
effective for test on 
proprietary data 

use them for domain-
specific fine tuning 
[ongoing]
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Tapas, Tapex, 
OmniTab: Fine-tuned 
Tabular LMs (TRL)

TQA



Fine tuning would fix it?

• fine-tune GPT-3.5 and ChatGPT using 18 table-tasks
- 3.2M tables, 1k training examples per task

16Table-GPT [Li et al, 2023]

TQA

SP



Results for SP - all tests, models

Promising results! 

With simple text 
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SP



Player Team FG% 3FG% Apps

t1 Curry GSW 48.0 44.7 826

t2 Curry Nets 47.7 43.9 377

t3 Jordan 76ers 67.3 8.3 780

Data-Ambiguous Questions
“Is Curry the best shooter in NBA?”

TRUE
It depends

shooter

18 [Veltri et al, ICDE 2023]



Results for SP - all tests, models
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Evaluating Ambiguous Questions in Semantic Parsing [Papicchio et al, 2024]

Simple NL text without data ambiguity 

NL text with attribute ambiguity, 
avg over 13 datasets 

SP



SQL and LLMs Vows
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“I will help your users write SQL queries”  [Veltri et al, ICDE 2023]

“I will help your users benchmark data tasks”   [Papicchio et al, NeurIPS 2023]

“We will answer queries jointly”   [Saeed et al, EDBT 2024]



SQL

• Powers
- scalable and cheap  big data 
- declarative  expressive and precise
- logic and relational model 

 exact relations

• Data Applications
- rich analytics
- data warehouse 
- data collection/preparation for ML on 
structured data (prediction)
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LLM

• Powers
- self supervised  pre-training
- transfer learning  easy to customize
- memorization  factual knowledge 

• Text Applications
- text analysis/creation/processing (Question 
Answering)
- chatbots/virtual assistant/code
- … 
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• Data Applications

Text doc

Pre-training

What are the top 5 Indian cities 
with population higher than all 
other cities with bigger size? 

I don't have real-time access to the 
internet or databases to provide current 

data. However, you could obtain such data 
from a reliable source such as the World 

Factbook by the CIA, World Bank 
datasets, or WHO databases
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NL Question SQL Query

Relations

Documents Question answering 
(QA)

Query Execution

User Input:
S

to
ra

ge
:

Semantic Parsing

Table QA



Applications

SELECT c.researchTopic, AVG(e.salary)
FROM LLM.Employees c, DB.Employees e
WHERE c.eid = e.eid
GROUP BY c.researchTopic
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SQLDB LLM

Enterprise own resources

• Hybrid querying
RAG, e.g., Llama3 with DB of 

embeddings from PDFs



Galois: SQL querying LLMs

• Input: SQL, 
arbitrary schema with key

• Storage: LLM

• Output: Relation
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Challenges
• LLMs store factual data, but

• Input: Not trained to execute SQL faithfully 

• Engine: Struggle with complex tasks

• Output: Not trained to (precisely) return relations
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Errors

LLM SQL



Query processing in 1 slide

SELECT S.name
FROM Reserves R, Sailors S

WHERE R.sid = S.sid
AND R.bid = 100 
AND S.rating > 5

SQL Query

Query Parser 𝜋𝜋S.name(𝜎𝜎bid=100⋀rating>5( 

Reserves⋈R.sid=S.sid Sailors))

Relational Algebra

𝜋𝜋S.name

𝜎𝜎R.bid=100 ⋀ S.rating > 5

⋈R.sid=S.sid

Reserves Sailors

(Logical) Query Plan:

On-the-fly
Select Iterator

will produce…

⋈R.sid=S.sid

𝜋𝜋S.name

𝜎𝜎R.bid=100

Reserves

Sailors

𝜎𝜎S.rating>5

(Physical) Query Plan: On-the-fly
Project Iterator

Indexed Nested 
Loop Join Iterator

Heap Scan 
IteratorB+-Tree

Indexed Scan 
Iterator

Operator Code 

tr
ee

 o
f t

ho
ug

ht
 

tables by construction 



SELECT S.name
FROM Reserves R, Sailors S

WHERE R.sid = S.sid
AND R.bid = 100 
AND S.rating > 5

SQL Query

Query Parser 𝜋𝜋S.name(𝜎𝜎bid=100⋀rating>5( 

Reserves⋈R.sid=S.sid Sailors))

Relational Algebra

𝜋𝜋S.name

𝜎𝜎R.bid=100 ⋀ S.rating > 5

⋈R.sid=S.sid

Reserves Sailors

(Logical) Query Plan:

Access LLM
will produce…

⋈R.sid=S.sid

𝜋𝜋S.name

𝜎𝜎R.bid=100

Reserves

Sailors

𝜎𝜎S.rating>5

(Physical) Query Plan:
DBMS

DBMS

Access 
LLM

Access LLM
NL prompts

Query processing in 1 slide
tr
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ht

 

tables by construction 



Physical Query Plan
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Physical Query Plan
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Factuality

• Decoder returns next token based on training 
data

• Such token may be based on either reliable 
acquired knowledge, or it may be a guess
 hallucinations

+ Models keep increasing the factuality of their 
answers*
+ Encouraging results from Galois
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*“GPT-4 scores 40% higher than GPT-3.5 on our factuality evaluations”

https://github.com/vectara/hallucination-leaderboard

https://openai.com/research/gpt-4
https://github.com/vectara/hallucination-leaderboard


Experiments - data

• Corpus of 46 SQL “reasonable” queries/questions from Spider (200 
datasets) 

• No: “How many heads of the departments are older than 56?”

• Yes: “What are the names of the countries that became independent 
after 1950?”

• Tested 4 LLMs: GPT-3 and ChatGPT better than Flan based
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Experiments – QA as “upper bound”
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SQL 
q1DB

RMLLM SQL 
q1

LLM QA
(q1)

Ground truth

TM

A B C D

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

A B C D

a1 b1 c1 d5

a2 b2 c2 d2

a3 c3

A B C D E

a1 b4 c1 d1 e1

a3 c3 d3 e3

text

QA

QE



Results ChatGPT
• Similarity in output results between ground truth and

• our method RM (SQL queries)

• manually parsed traditional TM (NL questions)
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QE

QA



Error analysis

• Different formats:
join country code “IT" with “ITA” for entity Italy

• Entity linking: “Brussels” vs “Bruxelles”

• Verbose output: “The city of Paris” 

• ChatGPT trained to output NL text adhering to human preferences

36



Next Steps
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Query optimization

• Physical: reduce hallucinations  
 prompts using data examples
 Reconfidencing [Chen et al, 2024]

• Logical: Reduce LLM calls  push 
down selections (“get names of cities 
with > 1M population”)

• Optimize cost, quality.. Without 
metadata/catalog



Open Questions
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• DB first: 
use LLM in operators – Galois
[Jo and Trummer, 2023], [Urban et al, 2023]

• LLM first: 
Consuming structured data in pre-
training, extensions, fine tuning…. But 
fine tuned ChatGPT obtains only 0.53 
accuracy for TQA
[Badaro et al, 2023] [Li et al, 2023]

• LLMs + Agents?
SP better results than TQA 
 Use LM for NLU, SQL/code for 
data operations
[Arora et al, 2023]

Access LLM

⋈R.sid=S.sid

𝜋𝜋S.name

𝜎𝜎R.bid=100

Reserves

Sailors

𝜎𝜎S.rating>5

(Physical) Query Plan:
DBMS

DBMS

Access 
LLM

Access 
LLM



http://www.eurecom.fr/~papotti/
@paolopapotti

International Workshop on Databases and Machine Learning – 13th May 2024

SQL and LLMs?

https://github.com/spapicchio/QATCH https://gitlab.eurecom.fr/saeedm1/galoishttps://github.com/enzoveltri/pythia

https://github.com/spapicchio/QATCH
https://gitlab.eurecom.fr/saeedm1/galois
https://github.com/enzoveltri/pythia


Solution
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• LLMs store factual data, but

• Input: Not trained to execute SQL faithfully 
 use simple NL prompts to get data

• Engine: Struggle with complex tasks 
 chain of thought* with simple tasks

• Output: Not trained to return relations 
 tables by construction as in DBMS

* breaking a problem down into intermediate reasoning steps increases LLM abilities 



If only LLMs had SQL powers…
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QueryDB/DW
Excel … 

ML

“Paolo works at Eurecom and 
his colleague Pietro leads the 

DS dept…”

Unsup.
Train LLM Query

Data applications: we could immediately query text documents!



Evaluate on output data

1. Benchmark multiple tasks: QA output is data

2. Data comparison enables accurate metrics for SP: execute correct SQL and 
generated SQL on D, compare data outputs

42

Sim(SQL script 1, SQL script 2)X



How do LLMs work? Big Picture

Transformers Language Model

1- Develop LM through pre-training using large unlabeled text corpora

2- Fine-tune LM using (small) labeled 
training data for target application

Transformer 
Based LM

Neutral

Fine-
Tuned 

LM

3- Given a new paragraph, predict sentiment

Fine-Tuned 
LM

Neutral

2’- Describe a task (with examples) in 
the prompt of the LLM

LLM Neutral

Please label the 
sentiment in the 
following text 



Reconfidencing [Chen et al, 2024]



Background

Query LLM with SQL queries. Different from

• SP: translate NL questions to SQL

• QA on tabular data: querying a relation with NL questions

• Neural DBs: textual facts encoded with a transformer and NL 
questions [Thorne et al., 2020]
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SP

TQA

QA
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SQL and LLMs Vows
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“I will help your users write SQL queries”

“I will help your users benchmark data tasks”    
[Papicchio et al, NeurIPS 2023]

“We will answer queries jointly” 
[Saeed et al, EDBT 2024]
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