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Physical design (PD) tuning is hard
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TPC-H Query

Tuned
Original
With indexes
Without indexes

Setting: TPC-H, SF10, DBMS-X, Tuning tool 5GB space for indexes

400

[VLDBJ’18, ICDE’15, DBTest’12]

[VLDBJ’18] Smooth Scan: Robust Access Path Selection without Cardinality Estimation. 
R. Borovica-Gajic, S. Idreos, A. Ailamaki, M. Zukowski and C. Fraser.And results can be unpredictable



Optimizer’s mistakes -> hurt predictability

Cause for sub-optimal plans
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Cardinality errors

Order of magnitude more tuples

Cost model

Wrong decision of cost model
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Physical design tuning under looking glass
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Broken pipeline….

Workloads 
ad hoc
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Recommended
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Learning algorithms to the rescue

Status quo: untenable for modern applications

6
Photos credit: Bloomberg, Stock market°, Atlas experiment, CERN*,  Strato Data Centre, cloudˆ 

Properties: 
• Ever growing data
• Ad hoc data exploration 
• Multi-tenancy

Challenges:
• Complex optimization problems
• Analytical models fail



Embarking the (M) learning train…
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Multi-armed bandits (MAB) for PD tuning
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• Pull an arm (slot machine) observe a reward (win/lose)
• Explore vs exploit
• Find a sequence of arms to maximize reward 
• Many variants, but C2UCB most interesting

Optimism in the face of uncertainty



[ICDE’21] DBA bandits: Self-driving index tuning under ad-hoc, analytical workloads with 
safety guarantees. M. Perera, B. Oetomo, B. Rubinstein, and R. Borovica-Gajic.

Index tuning with MAB (C2UCB)

11
Safety guarantees with fast convergence

[ICDE’21]

• UCB guarantees to converge to optimal policy
• C (contextual) learns benefit of arms without pulling them
• C (combinatorial) pulls a set of arms per round given constraints
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benefit

Observe
Workload

Recommended
indexes

MAB
Try arms (index)
Observe reward



(6) Creation time, Execution time 
w/ Index

MAB under looking glass…
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IX6

SELECT A.C1 FROM A
WHERE A.C2 = 5 AND 

A.C3 = 6

(3) Identify Arms

(Learns) 10sec gain, 20sec 
creation time, 30MB size

(2) Query details & 
Execution time before 
tunning

Arms

(4) Materialize IX6

IX1

IX2 

IX7

(1) New 
Query(5) 

Returning
Query

[ICDE’21]

Bandit tuner

[ICDE’21] DBA bandits: Self-driving index tuning under ad-hoc, analytical workloads with 
safety guarantees. M. Perera, B. Oetomo, B. Rubinstein, and R. Borovica-Gajic.Automated tuning with provable guarantees



MAB to the rescue
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Setting: TPC-H, SF10, DBMS-X, Multi-armed bandits (MAB) for index tuning

3x Speed up vs. previous 22x slowdown



MAB in action 
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Setting: TPCH, TPCH skew, TPC DS, SSB (10GB); IMDb(6GB) datasets
static (repetitive) vs random (ad hoc) queries, MAB vs PDTool, 25 rounds 
 

Thousands

MAB robust against complex unpredictable workloads 
and skew
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MAB in action: Zoom in TPC-DS

16Lightweight, yet efficient 

Setting: TPC-DS, static vs ad hoc queries, MAB vs PDTool, 25 rounds 
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Choosing a right tool for the job is key

Setting: TPC-H Skew 10GB, 100 rounds static   
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[ICDE’21]
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(NoDBA)*

*NoDBA: [ArXiv’18] The case for automatic database administration using deep 
reinforcement learning. A. Sharma, F. M. Schuhknecht, and J. DittrichFaster convergence, less variance with MAB



MAB for Index Tuning: An Example
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MV1

SELECT A.C1 FROM A
WHERE A.C2 = 5 AND 

A.C3 = 6

(3) Identify Arms

(6) Creation time, Execution time w/ 
Index

(Learns) 10sec gain, 20sec 
creation time, 30MB size

(2) Query details & 
Execution time before 
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IX1

IX2 

MV2

(1) New 
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Physical Design
X

Design too complex, too large action space

Bandit tuner



[VLDB’22] HMAB: Self-Driving Hierarchy of Bandits for Integrated Physical Database Design 
Tuning. M. Perera, B. Oetomo, B. Rubinstein, and R. Borovica-Gajic.

HMAB - Hierarchical Bandit Architecture
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L2 
Bandit

Bandit for 
Table A

Bandit for 
Table B

Bandit for 
MVs

Physical Design
Configuration

L1 Bandits

Smaller bandits for faster convergence
Knowledge sharing via central bandit

[VLDB’22]



HMAB with contexts

21

[VLDB’22]
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HMAB in Action
Setting: TPCH, TPCH skew, TPC DS, IMDb datasets; static (repetitive) vs random (ad 
hoc) queries, MAB vs PDTool, 25 rounds, tuning indices and materialised views
 

Static Random
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2914.41

Up to 96% speed-up, and 67% on average

Thousands

[VLDB’22]

~



[ICDE’21] DBA bandits: Self-driving index tuning under ad-hoc, analytical workloads with safety guarantees
 [VLDB’20] Magic mirror in my hand, which is the best in the land? an experimental evaluation of
index selection algorithms. J. Kossmann, S. Halfpap, M. Jankrift, and R. Schlosser.

Index Only Tuning

24

[ICDE’21]
DBA Bandits

[VLDB’20] 
Magic Mirror

Outperforming baselines over a single DS as well

[VLDB’22]



[TKDE’23] No DBA? No regret! Multi-armed bandits for index tuning of analytical and HTAP 
workloads with provable guarantees. M. Perera, B. Oetomo, B. Rubinstein, R. Borovica-Gajic.MAB with focused updates to support HTAP

Dealing with complexity (HTAP)
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No DBA? No regret! …
[TKDE’23]



[ICDM’21] Cutting to the Chase with Warm-Start Contextual Bandits. B. Oetomo, M. Perera, 
B. Rubinstein, and R. Borovica-Gajic.

But isn’t exploration too expensive?

Setting: TPC-H benchmark 10GB, 5 queries, 25 rounds static   

(Inexpensive) warm up reduces exploration cost

Cutting to the chase with warm bandits
[ICDM’21]
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Summary
• (H)MAB is a lightweight MAB solution for (integrated) 

physical database design tuning
• HMAB is the first learned solution to work in the 

combined space of indices and views
• (H)MAB successfully tackles tuning challenges: optimizer 

misestimates, unpredictable and HTAP workloads
• Up to 40% and 70% average improvement for integrated 

view and index tuning under static and random settings 
compared against a SOTA commercial tuning tool

29



Critical view on learning-based algorithms

This is great, but……

30
(Relatively) slow uptake by commercial vendors...



Properties for future DBMS adoption

Lightweight, yet (provably) accurate is key 

• Small computational overhead
— Pre-training important, yet often ignored
— Resources plus time invested

• Ability to adapt and generalize
— See the past, adjust to unpredictable future
— Train on development port to product environment
— Transfer learning critical

• Safety guarantees required 
— Prove it does the right thing
— Explain the output (decisions made)

31



Numerous opportunities for innovation
• ML within the DB Engine

– Physical database design
– Learned vs traditional data structures
– Configuration tuning
– Resource management
– Query optimization

• Innovation in ML domain
– Hierarchical MABs (infinite arms)
– Pretraining for faster convergence (warm start)
– Lightweight transfer learning

32Plus, the entire field DBs for ML!



“It is not the strongest species that survive, nor the most intelligent, but the ones 
most responsive to change.” Charles Darwin

Learning DBMSs for efficient data analysis

Where to go from here

Queries

Data Fast response

DBMS System

33

Learn
Adapt 
Refine

Hardware

[SIGMOD’12] 
[CACM’15]
[ICDE’21]
[ICDM’21]
[VLDB’23]
[TKDE’23]

[ICDE’15] 
[VLDBJ’18]
[ADC’20] 
[SIGMOD’23]
[ICDE’24]
[VLDB’24]

[VLDB’16]
[ADMS’17]
[CACM’19]



Questions?

34THANK YOU!

Website: https://renata.borovica-gajic.com/

Email: renata.borovica@unimelb.edu.au

Looking for PhD students!

Malinga 
Perera

Ben 
Rubinstein

Bastian 
Oetomo

*This work is supported by the Australian Research Council 
Discovery Project DP220102269, and Discovery Early 
Career Researcher Award DE230100366.



Backup slides
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Rewards that guide MAB

36



MABs don’t need to try all arms

37



MAB with context

38



HTAP: positive + negative rewards

39



HTAP: Focused updates

40



HMAB with contexts

41



Materialised View Only Tuning
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Setting: TPC-H, static, MAB vs ICDE’21* baselines, 25 rounds, tuning 
materialised views

*[ICDE’21] An Autonomous Materialized View Management System with Deep Reinforcement Learning. 
Y. Han, G. Li, H. Yuan, and J. Sun.
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