
Leveraging Temporal and Topological Selectivities
in Temporal-clique Subgraph Query Processing

Kaijie Zhu?,†, George Fletcher?, Nikolay Yakovets?
?Eindhoven University of Technology, The Netherlands

†NDSC, Zhengzhou, China
{k.zhu, g.h.l.fletcher, hush}@tue.nl

Abstract—We study the problem of temporal-clique subgraph
pattern matching. In such patterns, edges are required to jointly
overlap in time within a given temporal window in addition
to forming a topological sub-structure. This problem arises in
many application domains, e.g., in social networks, life sciences,
smart cities, telecommunications, and others. State-of-the-art
subgraph matching techniques, however, are shown to be limited
and inefficient in processing queries with both temporal and
topological constraints. We propose an approach that takes full
advantage of both topological and temporal selectivities during
the processing of temporal-clique subgraph queries. Additionally,
we investigate a number of optimizations that can be introduced
into our approach to improve its efficiency. Our experimental
results demonstrate that our approach outperforms the existing
methods by a wide margin at a small additional storage cost.

Index Terms—temporal graph, query processing, database
system, join

I. INTRODUCTION

Motivation. Temporal graphs, where time intervals are as-
sociated with each edge of the graph, arise in a variety of
contemporary applications. Consider a temporal graph repre-
senting road traffic in New York City from 2009 to 2021,
where vertices represent road intersections and edges represent
the flow of vehicles in road segments between intersections.
Each edge is labeled with a status of ‘fluid’ or ‘congested’
and carries a time interval representing the duration of the
status. For traffic planning, engineers are interested in chains
of roads of various length wherein each road in the chain is
congested at the same time (i.e., a traffic jam). Furthermore,
engineers are interested to find traffic jams at varying time
scales, e.g., all traffic jams involving 4 roads occurring in the
month of April 2011, and, focusing on a particular period of
a particular day, all traffic jams involving 4 roads occurring
on 14 April 2011 between 5pm and 7pm, i.e., during rush
hour. The key elements of this problem are: the chain pattern
(i.e., the topological structure of interest) and a time window
in which all edges of the chain pattern jointly overlap in time
(i.e., the temporal structure of interest).

In general, we are looking for all embeddings of a topo-
logical structure in a temporal graph occurring in a given
time window such that all edges of the embedding form a
“temporal-clique”. Here “temporal-clique” emphasizes that the
edges are tightly interconnected in time, in addition to satis-
fying the topological pattern of interest. This is in contrast to

traditional “cliques”’ in which nodes are tightly interconnected
in topology. This basic problem arises in a wide range of
applications beyond the transportation domain.
• In a social network where vertices represent users and

edges represent the ‘following’ relationship, find, in the
first week of August 2020, all pairs of users who at the
same time followed at least three other users in common.

• For malicious network attack detection, where vertices
and edges represent IPs and connections, resp., find all
Denial-of-Service attack occurring last night between
11pm and 3am, where attackers, bot machines, and vic-
tims were connected at the same point in time.

• For deeper understanding of scientific collaborations in
a bibliographic database, find all triangles in which 3
people collaborated with each other at the same time, at
some point in time in the 1990’s.

• In a sports knowledge graph, find those footballers who,
at some moment in 2007, lived in the UK, were managed
by Alex Ferguson, and played for Manchester United.

It is important to note that in all of these applications, it is
not sufficient to obtain pattern matches which overlap with the
query window but do not necessarily jointly occur at a given
point in the window, i.e., do not form a temporal-clique. The
joint overlap in time is crucial for correct query results (e.g.,
a traffic jam does not happen if congestion on the roads of
the chain occurs on different days in April 2011 for different
edges of the chain).

It is also important to note that being able to specify a time
window (instead of just a time point or a small fixed window
size) for the search is fundamental to the analyses in each of
these applications. Indeed, the query time window captures
the period of user interest, which can range from seconds to
decades (or even longer) depending on the application. Fur-
thermore, while it is possible to convert the search for matches
in a time window into a set of queries, one query for each
timestamp in the query window, independently solving each
of these queries leads to highly inefficient query evaluation.
Indeed, there is potentially a tremendous amount of redundant
work at each time point, which could be shared and reused
across the time points in the window [28].

The problem. Motivated by these observations, we study the
temporal-clique subgraph query problem, which generalizes

our examples above: given (1) a temporal graph G where each
edge has an associated temporal window; (2) a subgraph query
pattern q; and, (3) a query time window, find all matches of q
in G where the match life-span (i.e., the time interval on which
all of the matched edges overlap) is non-empty and overlaps
the query time window.

Studies of graph query processing have primarily focused on
leveraging the selectivity of topological predicates (e.g., edge
labels, value predicates, and join predicates) [6]. However,
the selectivity of temporal predicates in real-world temporal
networks can have a significant impact on query processing
costs, yet there has been relatively little work on leveraging
temporal selectivity in temporal graph query processing.

To support efficient temporal-clique subgraph queries, a di-
rect method is to treat the time intervals associated with edges
as edge properties and process the temporal predicates using
an existing pipeline (i.e. parser, optimizer, and operators). To
be more specific, matches that only satisfy the topological
join predicates are first produced. Then the selection operators
are used to filter the matches that do not satisfy the temporal
predicates. We call this class of methods “topology then time”
(PT) since the temporal predicates are processed after topology
predicates. Such pipelines can be inefficient since the selectiv-
ity of temporal predicates are not fully used. Another class of
methods that we name “time then topology” (TP) processes
the temporal predicates using existing techniques (e.g., start
time index [28]) and then processes the topological predicates
using an existing query evaluation pipeline. This class can
also be very inefficient since the topological predicates can be
more selective than temporal predicates in some scenarios. We
call state of the art methods which process both temporal and
topological predicates at the same time to fully take advantage
of their selectivities as T&P. However, existing T&P methods
concentrate on specific query patterns (e.g., temporal paths)
instead of supporting the processing of queries with general
and arbitrarily complex patterns.

Our contributions. In this paper, we directly address the
temporal-clique subgraph query processing problem following
a T&P pipeline. In our approach, both temporal and topo-
logical characteristics of graphs are indexed. During query
processing, temporal and topological predicates are applied at
the same time. In this way, the selectivities of both predicates
are fully taken advantage of. In particular:
• We propose a novel method, leapfrog TSRJOIN for

efficient temporal-clique subgraph query processing fol-
lowing T&P pipeline, which is efficient in processing
queries with general patterns (Section IV).

• We develop several mechanisms to further optimize the
processing efficiency in the TSRJOIN (Section V).

• We present the results of an in-depth experimental study
which demonstrates significant improvement in perfor-
mance introduced by our new methods (Section VI).

Our approach is the first T&P method which efficiently
supports general and arbitrarily complex query patterns on
temporal graphs.

v1

v0
e1:(a

,0,5)

v2

e2:
(a,
5,1
0)

v3

e3
:(a
,1
0,
12
)

v4

e4:(a,13,15)

v5

e5:(a,18,20)

v6 e6:(b,1,3)

v7 e7:(b,9,12)

v8 e8:(b,13,15)

v9

e9
:(b
,17
,20
) v10

e10
:(b
,18
,20
)

v11

e11:(c
,3,5)

v12e12:(c,15,16)

e1
3:(
c,2
,2)

G1

v5
v2

e6:(a,10,20)

v1
e4:(
a,15
,25)

v6
e5:(b,1

0,20) v4

e3:(b,5,15)

v3

e1:(c,10,18)

v7

e7:(
a,3
,13
)

v9e8:(a,15
,25)

v8

e9:(b,5,15)

v10

e10:(c,5,5)

e2:
(d,
13,
20)

G2

Fig. 1. Two example temporal graphs.

II. PRELIMINARIES

In this section, we introduce basic concepts and definition.

Temporal graph. Let L be a set of labels and T be a
set of timestamps. A temporal graph is a structure G =
(V,E, η, λ, τ), where: V and E are respectively sets of nodes
and edges; η : E → V × V is a function assigning to each
edge an ordered pair of nodes, denoted η(e) = (u, v), where
e ∈ E and u, v ∈ V ; λ : E → L is a function associating
each edge with a label, denoted λ(e) = l where e ∈ E and
l ∈ L; and, τ : E → T × T is a function assigning to each
edge a time interval, denoted τ(e) = [ts, te] where e ∈ E,
ts, te ∈ T , and ts ≤ te. For convenience, we call l, u, v, ts, te
respectively the label, source, destination, start time, and end
time of e.

Example. Figure 1 presents two temporal graphs G1, G2.
In G1, we have V = {v0, . . . , v12} and E = {e1, . . . , e13}.
Taking e1 as an example, the label, source, destination, start
time, and end time of e1 are respectively l = a, u = v0,
v = v1, ts = 0, te = 5.

Temporal-clique subgraph query. A temporal-clique sub-
graph query is a pattern q of the form

(e1, . . . , en) ← l1(u1, v1), . . . , ln(un, vn), [qs, qe]

where e1, . . . , en, u1, v1, . . . , un, vn are variables (possibly
with repetition); l1, . . . , ln ∈ L; and, qs, qe ∈ T where qs ≤
qe. Given a temporal graph G = (V,E, η, λ, τ), the evaluation
of q on G is the set of all matches ε = (e1, . . . , en, [εs, εe])
such that:

1) e1, ..., en ∈ E and εs, εe ∈ T ;
2) there exists a function f : {u1, v1, ..., un, vn} →

V such that f(ui) = source(η(ei)), f(vi) =
destination(η(ei)), and λ(ei) = li, for ∀i ∈ [1, n];
and,

3) [εs, εe] = τ(e1)∩ · · · ∩ τ(en) and it holds that [εs, εe]∩
[qs, qe] 6= ∅.

For convenience, we call constraint (2) the topological
predicate of q since this ensures the topological structure in a
match. Similarly, we call constraint (3) the temporal predicate
of q since it ensures the temporal overlapping behavior in a

e q
1

vq0

vq1
a

eq 2

vq2

eq3

vq3

b

c

eq1

vq1

vq2

a
eq2

vq3
c

eq3
vq4

d

eq4

vq5

b

eq4

vq4

vq1

b

eq1
vq2

a

eq2

vq3
d
eq3

c

q1:[10,20]

q2:[10,20]

q3:[10,20]

Fig. 2. Three temporal-clique subgraph queries.

match. We call li(ui, vi) the ith query edge of q, denoted eqi .
We call ui, vi the query vertices of q, denoted vq2i−1, v

q
2i. We

call each match ε : (e1, . . . , en, [εs, εe]) a complete match of
q. We call ei an edge match of eqi , denoted ei ∼ eqi . We call
η(ei).u = source(η(ei)) and η(ei).v = destination(η(ei))
the vertex bindings of vq2i−1 and vq2i, resp. We call [εs, εe]
the lifespan of ε. We call the set of all complete matches the
complete result of q.

Example. Figure 2 presents three temporal-clique subgraph
queries q1, q2, and q3. In q1, we have query vertices vq0, . . . , v

q
3;

query edges eq1 = a(vq0, v
q
1), eq2 = b(vq0, v

q
2), and eq3 =

c(vq0, v
q
3); and, query window [10, 20]. q1 aims to return all

complete matches of 3-star pattern overlapping [10, 20] in a
given temporal graph.

Note that we aim to find matches for query edges instead of
vertices, since multiple edges (e.g., associated with different
time intervals) can exist between the same pair of vertices.
Two matches ε1 and ε2 are viewed as distinct matches if they
differ on their bindings of at least one query edge.

Partial match. (e′1, . . . e
′
m, [ε

′
s, ε
′
e]) is a partial match of q if:

1) e′1, ..., e
′
m ∈ E and m < n;

2) For each i ∈ [1,m] there exists j ∈ [1, n] such that
e′i ∼ e

q
j ; and,

3) [ε′s, ε
′
e] = τ(e′1)∩ · · · ∩ τ(e′m) and [ε′s, ε

′
e]∩ [qs, qe] 6= ∅.

Example. Consider q1 evaluated on G1. (e4, e8, e12, [15, 15])
would be produced as a complete match, where [15, 15] is the
life-span of the match. Moreover, (e4, [13,15]), (e8, [13,15]),
(e12, [15,16]), (e4,e8, [13,15]), (e4,e12, [15,15]), and (e8,e12,
[15,15]) are all partial matches of the q1.

Problem statement. We study the problem of “temporal-
clique subgraph query evaluation”. Given a temporal graph
G and a temporal-clique subgraph query q, we aim to find the
set of all complete matches of q over G.

Temporal selective relation (TSR). Given a temporal graph
G = (V,E, η, λ, τ), a temporal selective relation R in G is a
ternary relation R(l, s, d), where

1) l ∈ L is the label constraint,

timetimetime

0 2 4 6 8 10 12 14 16 18 20 22

R1(a, v0,−)

R2(b, v0,−)

R3(c, v0,−)

e1

e2

e3 e4 e5

e6 e7 e8 e9

e10

e11 e12

Fig. 3. The collection of r-TSRs of query edges in q1 under v0. Dash lines
represent the query window.

2) s is the source constraint, which can be either a vertex
v ∈ V or ∗ (any vertex), and

3) d is the destination constraint, which can be either a
vertex v ∈ V or ∗.

R represents a relation composed by edge e ∈ E such
that λ(e) = l and η(e) = (s, d). Specifically, R(l, s, ∗) (or
R(l, ∗, d)) denotes all of s’s outgoing (or d’s in-going) edges
associated with label l.

Relevant TSR (r-TSR). Suppose for a query edge eq =
l(uq, vq) that v1 and v2 are respectively bindings of uq and
vq . We say R(l, v1, v2) is relevant to eq under v1, v2, and
R(l, v1, v2) is the relevant TSR of eq under v1, v2. If v1 = ∗
(or v2 = ∗), we call R(l, ∗, v2) (or R(l, v1, ∗)) the r-TSR of
eq under v2 (or v1).

Bound r-TSR. Given temporal-clique subgraph query q and a
binding vb of query vertex vq in a partial match of q, a r-TSR
R is called a (vq, vb)-bound r-TSR in q if there exists a query
edge eq such that
• eq is adjacent to vq ,
• eq has not been matched yet, and
• R is relevant to eq under vb.

Example. Continuing our running example, Figure 3
presents, for G1, three TSRs R1(a, v0, ∗) = {e1, . . . , e5},
R2(b, v0, ∗) = {e6, . . . , e10}, and R3(c, v0, ∗) = {e11, e12},
which are respectively composed of v0’s outgoing edges
associates with label a, b, and c in G1. R1, R2, and R3 are
respectively r-TSRs of eq1, eq2, and eq3 under v0. If the edge
matches of eq1, eq2, and eq3 have not been determined, R1, R2,
and R3 are all (vq0, v0)-bound r-TSRs in q1.

III. RELATED WORK

A. General subgraph query processing

Subgraph queries are processed by executing a guided
search over a given graph. During the search, query vertices
are bound to graph vertices to produce (partial) matches. A
number of different search strategies exist along with a number
of pruning strategies which aim to minimize the part of the
graph explored during the search.

In breadth-first-search-based approaches, partial matches are
produced by processing a query graph edge-at-a-time [12],
[13], [20], [23]. These methods are based on binary joins
(BJs) which extend the partial match by matching query edges
to corresponding edges in a graph. In depth-first-search-based
approaches, on the other hand, the matches are extended by
matching query vertices to vertices in a graph, vertex-at-a-
time, by using efficient multi-way joins which are worst-
case optimal (WCO). A series of WCO-join algorithms (e.g.,
NPRR, Leapfrog Triejoin (TRIEJOIN), [24], Generic-join [17],
Minesweeper [18]) have been proposed as the core of this
category. Our approach is based on the TRIEJOIN.

The TRIEJOIN is a WCO-join algorithm that is currently
used in several state-of-the-art database systems (e.g., in
LogicBox, in AVANTGRAPH, and others). The basic idea of
a TRIEJOIN is to iteratively extend the determined bindings
for query vertices and filter the candidates by looking ahead
similar to the depth-first search algorithm. We identify three
key ingredients of a TRIEJOIN: (1) the trie representation, (2)
the binding production, and (3) the binding propagation. The
trie representation indexes the entities (e.g., labels, sources,
and targets) of a graph in sorted order so that they can be used
as a support for binding production. The binding production
determines the vertex bindings in a sort-merge algorithm
on a pre-constructed trie by using multi-way intersection
and leapfrogging. The multi-way intersection technique joins
multiple relations by a series of nested intersections, and
leapfrogging technique skips over data that is guaranteed not
to result in a binding. The binding propagation hands over the
determined bindings to the parent operator of a TRIEJOIN so
that they can be further extended in later processing.

We will now present the details of the binding produc-
tion in TRIEJOIN since it is directly used in our proposed
method. Considering that k sorted unary relations (e.g., each
containing vertex IDs) are going to be processed, a method
named leapfrog-init() is first invoked to initialize the relations.
leapfrog-init() represents each relation by an iterator initially
positioned at its first vertex, and then sorts the iterators by
their positioned keys in ascending order. Following leapfrog-
init(), the main workhorse leapfrog-search() is invoked to find
the next binding in the intersection of the k relations. The
basic idea of leapfrog-search() is that, in each turn, considering
vmax is the current highest-value key among the k iterators,
the method takes the iterator positioned the lowest-value key
and seeks to vmax in the corresponding relation. If such key
value does not exist, the iterator is positioned to the first
key that is no smaller than vmax and updates the positioned
key value as the new vmax. Otherwise, the algorithm returns
vmax as a vertex binding. Subsequent bindings are obtained
by invoking a method named leapfrog-next(). leapfrog-next()
first positions current iterator at its next key and then invokes
leapfrog-search() to find the next binding in the intersection.
The procedure is repeated until the vertices in a relation are
consumed. In this way, all bindings in the intersection of the
k relations are produced. The overall complexity of TRIEJOIN
is O(Q∗ logM), where Q∗ is the upper bound of result size

and M is the largest cardinality among the unary relations.

B. Temporal subgraph query processing

According to the processing order of topological and tem-
poral predicates, prior methods for temporal subgraph query
processing can be classified into PT, TP, and T&P as discussed
in Section I. For each class, we next introduce the general idea
and relevant methods.

Topology-then-time. The basic idea in PT methods is to
index the topological characteristics of graph and process
the topological predicates before temporal predicates. Xu
et al. [27] proposed the TCGPM-E algorithm, which first
produces the topological matches over the subgraphs centering
at selective edges and then filters the matches with pruning
rules based on temporal predicates. Since query models over
property graphs and hybrid planning engines [5], [16] are
supported in modern database systems (e.g., PostgreSQL,
AVANTGRAPH), a common idea of query processing is to treat
the temporal aspects as general selection properties. In this
way, physical plans, which are composed of join operators
to process topological predicates and selection operators to
filter the intermediates that do not satisfy temporal predicates,
can be generated and used for temporal-clique subgraph query
processing. PT methods can be very inefficient since the
selectivity of temporal predicates are not fully taken advantage
of during query processing.

Time-then-topology. TP methods essentially index the tempo-
ral characteristics of the graph and process temporal predicates
before topological predicates. Wu et al. [25] proposed a algo-
rithm for mininum temporal paths. Kumar and Calders [11]
proposed an algorithm for circle-enumeration in temporal
networks. Edges in these works are sorted temporally to be
processed. In recent years, studies on interval join processing
methods have provided effective ways to index temporal
aspects and process temporal predicates. Query processing
pipelines can first processes the temporal predicates using in-
terval join processing methods to find the temporal overlapping
cliques. Then physical plans composed of join operators can
be applied to the cliques to find valid topological matches for
queries. Currently, the best performing solutions for interval
joins are based on plane-sweep methods [7], in which relations
are sorted in temporal ordering so that they can be processed
in a streaming fashion. Piatov et al. [19] proposed two sweep-
based interval join algorithms EBI and LEBI, which outper-
forms prior plan-sweep methods while suffers from a large
sweeping range and high maintenance cost on intermediate
results. Bouros and Mamoulis [7] proposed two forward scan
algorithms gFS and bgFS. However, the two methods suffer
when extremely long intervals exist in the processed relations.
Based upon an analysis of these shortcomings, Zhu et al. [28]
proposed a new sweep-based method based on start time
index (STI), which outperforms previous methods. However,
even leveraging these solutions, the TP methods can still be
inefficient since scenarios commonly occur where topological
predicates are more selective than temporal predicates.

Time-and-topology. Based on the shortcoming of these two
classes, T&P methods index both topological and temporal
aspects and process the two predicates together to fully take
advantage of their selectivities. Mackey et al. [15] proposed an
algorithm for temporal subgraph isomorphism which processes
directly on edges sorted by time. Franzeke et al. [9] extended
classical subgraph isomorphism algorithms and proposed a
processing algorithm using indexed motifs. However, the def-
inition of temporal networks and queries in these researches
are different from ours. Semertzidis and Pitoura [22] proposed
an algorithm to find the top-k most durable patterns along the
graph. The data and queries in this research is more similar to
our own but still important differences exist (e.g., edges do not
have labels). Wu et al. [26] proposed the TopChain approach
for reachability queries using indexed time-respecting chain
coverage in network. Byun et al. [8] proposed the Chrono-
Graph system for temporal graph traversals, which can support
traversal queries such as temporal reachability and shortest
path query. Ramesh et al. [21] proposed a distributed execution
model for temporal path queries using the interval-centric com-
puting model. These investigations have mostly concentrated
on querying specific patterns (e.g., temporal paths) and do not
provide a method for querying general subgraph patterns.

To summarize, to the best of our knowledge, state of the art
T&P methods do not support processing of arbitrary subgraph
patterns on temporal graphs. In this paper, we propose a
general T&P method that provides efficient processing for such
queries.

IV. PROPOSED METHOD

In this work, we propose an operator named Leapfrog TSR-
Join (TSRJOIN, for short) designed for efficient processing of
temporal-clique subgraph queries, which is a temporal exten-
sion of a TRIEJOIN. We choose TRIEJOIN as our baseline for
its excellent performance in processing of general conjunctive
queries on graphs [10] which correspond to resolving the topo-
logical predicates in our investigated queries. These merits of
TRIEJOIN allow us concentrate on a remaining challenge: how
can we inject an efficient processing of temporal predicates?
A straightforward solution is to insert selection operators after
each TRIEJOIN as in PT. However, this solution suffers from
rigidity in predicate ordering due to its fixed PT order and
vertex-at-a-time matching. In Section VI, we would further
illustrate its inefficiency by detailed experiments.

Comparing to TRIEJOIN, our proposed TSRJOIN is com-
posed of four key components: the TSR representation, bind-
ing production, partial match production, and partial match
propagation. Our method starts from the TSR representation
which indexes the TSRs as support for both binding and
partial match production. Based on the represented TSRs,
the binding production can produce a binding vb of query
vertex vq as in TRIEJOIN. Using vb, the (vq, vb)-bound r-
TSRs R1 . . . Rk can be retrieved from the represented TSR.
Then, partial match production determines the matches for
subgraph composed of vq’s adjacent edges by processing a k-
way interval join over R1 . . . Rk. This, in fact, extends vb to a

series of partial matches, where the endpoints of edge matches
are regarded as the bindings of corresponding vertices. Finally,
partial match propagation hands over the partial matches to the
parent operator so that match’s lifespans and bindings can be
later used in processing the remainder of the query. In the
remainder of this section, we present the details of all the
components except the binding production, which is the same
as in a TRIEJOIN.

TSR representation. Since the aim of TSR representation is
to support other components, we should consider the following
prerequisites. First, the ordering structure in a trie should be
inherited to support the binding production. Second, the TSRs
should also be temporally sorted to support the partial match
production in which a k-way interval join algorithm is carried
out.

Based on these prerequisites, we propose temporal adja-
cency indexes (TAIs) to represent the TSRs, which are the
temporal extensions of a trie in TRIEJOIN and adjacency in-
dexes in a database system. The proposed TAIs are composed
of four distinct indexes named temporal LS, LD, LSD, LDS
indexes. In each index, edges are categorized by the keys in
the order as indicated in its name (L: edge labels, S: edge
sources, D: edge destinations).

The TAI is constructed as a trie in the order as prescribed by
its name thus facilitating efficient topological binding produc-
tion. Next, corresponding edge-values in a trie are sorted by
their start time in ascending order. As a result, the temporally
sorted TSRs can be directly obtained from TAIs, which pro-
vides a support for partial match production. The construction
complexity of TAIs is O(|E| · (log |L| + log |V | + log |E|)),
where |L|, |V |, |E| are the number of labels, vertices, and
edges. To save the cost, LDS can free its attached TSRs while
keep the trie structure since R(l, s, d) can still be obtained
from the LSD alone.
Example. Figure 4 presents the LS and LD of G1. We note
the LS and LD-indexing structure (colored in yellow) in the
two indexes have inherited ordering structure from tries, which
can provide a support to binding production. Besides, we note
that attached TSRs (colored in green) are sorted by start time
so that they can be directly fed to plane-sweep interval join
methods (e.g., FS or STI [28]). More specifically, start-time-
sorted R1(a, v0, ∗), R2(b, v0, ∗), R3(c, v0, ∗) can be directly
obtained and processed with the plane-sweep interval join
methods.
Partial match production. We define a second workhorse
named leapfrog-temporaloverlap() (denoted LFTO) for effi-
cient partial match production. Every time a binding vb of
query vertex vq is determined, LFTO is invoked to process
the temporal predicates among (vb, vq)-bound r-TSRs, to find
matches for vq’s adjacent edges, and to produce the collection
of partial matches. Algorithm 1 presents the procedure of
LFTO. Besides bound r-TSRs, a valid time window [ws, we]
is used as the input parameter to filter the invalid edges. More
specifically, if vb is determined by the initial leapfrog-search(),
the valid window should be exactly the query window [qs, qe].

a

Label Entry

v0

Temporal LS index

a

Label Entry
Temporal LD index

(0,5,e1) (5,10,e2) (10,12,e3) (13,15,e4) (18,20,e5)

b v0 (1,3,e6) (9,12,e7) (13,15,e8) (17,20,e9) (18,20,e10)

c v0 (3,5,e11) (15,16,e12)

v6 (2,2,e13)

b

c v11 v12v1

(3,5,e13) (15,16,e12)(2,2,e13)

v1 v2 v3

(0,5,e1) (5,10,e2) (10,12,e3)

v4 v5

(13,15,e4) (18,20,e5)

v1 v2 v3

(1,3,e6) (9,12,e7) (13,15,e8)

v4 v5

(17,20,e9) (18,20,e10)

trie TSR

trie TSR

Fig. 4. The LS and LD structures of graph G1. The yellow and green parts
respectively refer to the ordering structure in a trie and TSRs

If vb is determined by a propagated partial match, the valid
window should be its lifespan. Two groups of k-scanners are
defined to support the plane-sweep on r-TSRs: the Scancur
and Scanend. For each Ri, Scancur[i] refers to the currently
scanned edge in Ri. Scanend[i] refers to the ending of the
edge-scanning in Ri. To start with, Scancur is initialized at
the first edge in TSRs (Line 2), which represent collection
of starting points of the edge-scanners. Similarly, Scanend is
initialized at the first edge which starts later than we in TSRs
(Line 3), which represents the edge-scanning end point in each
relation. A dedicated structure Active is maintained to record
the edges at current time that can be used to produce partial
matches (Line 4). We use Active[i] to represent Ri’s currently
active edges in Active sorted by their end-time in ascending
order. We define following operations to maintain Active:

• insActive(Active, e, i): insert the edge e into Active[i];
• delActive(Active, t): delete all edges e s.t. t > τ(e).te

from Active;
• enumActive(Active, e): enumerate all partial matches

over the elements in Active which contains exactly one
occurrence of edge e.

In each iteration, the algorithm first obtains the scanner
sc (Line 6), the positioned edge of which has the minimal
start time, and reads the positioned edge (Line 7). If the edge
overlaps the valid window (Line 8), the algorithm deletes the
expired edges from Active (Line 9), enumerates the matches
in Active containing e (Line 10), and inserts e into Active
(Line 11). Finally, the algorithm positions sc to its next edge
(Line 12). If sc reaches its scanning end (Line 13), the
algorithm closes sc (Line 14). The algorithm keeps iterating
until all iterators are closed (Line 5). In this way, LFTO solves
the temporal predicates and produces a collection of partial
results extended from vb.

Algorithm 1: Leapfrog temporal overlap
Input: bound r-TSRs R1, . . . , Rk, time window [ws, we]
Output: partial match collection Result

1 for i ∈ [1, k] do
2 Scancur[i]← Ri.begin()
3 Scanend[i]← Ri.upper(we)

4 Active← ∅, Result← ∅
5 while ∃j ∈ [1, k] s.t. Scancur[j] is not closed do
6 sc← Scancur[i] s.t. min

i∈[1,k]
τ(Scancur[i].e).ts

7 e← sc.e
8 if τ(e) ∩ [ws, we] 6= ∅ then
9 delActive(Active, τ(e).ts)

10 Result← Result ∪ enumActive(Active, e)
11 insActive(Active, e, i)

12 sc.next()
13 if Scancur[i] = Scanend[i] then
14 Close Scancur[i] and Scanend[i]

15 return Result

TABLE I
AN EXAMPLE OF LFTO ALGORITHM.

Edge Active Enumerate
e1 ∅ ∅
e6 ∅ ∅
e11 ∅ ∅
e2 [1]:{e2} ∅
e7 [1]:{e2},[2]:{e7} ∅
e3 [1]:{e2, e3}, [2] : {e7} ∅
e4 [1]:{e4} ∅
e8 [1]:{e4},[2]:{e8} ∅
e12 [1]:{e4},[2]:{e8},[3]:{e12} (e4, e8, e12, [15, 15])
e9 [2]:{e9} ∅
e10 [2]:{e9, e10} ∅
e5 [1]:{e5},[2]:{e9, e10} ∅

Example. Continuing our examples and considering vq0 is
bound with v0 and R1, R2, R3 shown in Figure 3 are first
obtained as the (vq0, v0)-bound r-TSRs. Scancur[1, 2, 3] are
initially set at e1, e6, e11 and Scanend[1, 2, 3] are set at the
end of each relation. The processing procedure is shown in
Table I. In this way, a star query can be processed in a single
TSRJOIN, as shown in Figure 5(a).

The complexity of Algorithm 1 is O(k ·|Rmax| log |Rmax|),
where |Rmax| is the cardinality of the largest participating
TSR.

Partial match propagation. We consider TSRJOIN as the
only join operators used in a physical plan. A plan to process
more complex queries (e.g., a chain, a circle) can be composed
of more than one TSRJOIN. Given a partial match produced
by the LFTO algorithm, partial match propagation allows the
match to be handed over to a parent operator so that it can
be further extended to the remaining predicates in a query.
Comparing to the binding propagation in TRIEJOIN which
only hands over the bindings, partial match propagation hands
over both bindings and a life-span of the partial result, which
fully takes advantage of the selectivity of both topological and

vq
2 vq

4

eq
2 eq

3

vq
2 vq

4

eq
2 eq

3

vq
1 vq

5

(b) TSRjoin plan for q2

vq
2

vq
3

vq
4

eq
2 eq

3

vq
3eq

2 eq
3

vq
2

vq
1

vq
4

eq
4

vq
3eq

2 e3
q

vq
2

vq
1

vq
4

e4
qeq

1

(c) TSRjoin plan for q3

eq
1 eq

4

B1

 C3B2

C2

C1

vq
1 vq

2

eq
1

eq
3

eq
2

(a) TSRjoin plan for q1

A1 vq
3

vq
0

vq
3

vq
3

Fig. 5. TSRJOIN plans for queries q1, q2, and q3.

temporal predicates.
Example. Consider a 4-chain query q2 and 4-circle query q3

(shown in Figure 2) over G2 (shown in Figure 1). Figure 5(b)
and 5(c) present the physical plans for processing of q2
and q3. The plan for 4-chain query q2, is composed of two
TSRJOINs B1 and B2. B1 produces the partial matches of
the vq3-centered 2-star pattern (i.e. (eq2, e

q
3)) since vq3 is the

most selective query vertex according to our cost model. This
determines edge matches for eq2, e

q
3 and bindings for vq2, v

q
3, v

q
4 .

B2 extends each partial match produced by B1 with eq1, e
q
4 so

that the complete result of q2 can be processed. To be more
specific, consider in B1, leapfrog-search() has determined
v3 a binding of vq3 . The following LFTO algorithm would
process a 2-way interval join over R(c, ∗, v3), R(d, v3, ∗).
From the interval join, (eq2,eq3) are matched with (e1,e2) and
(e1, e2, [13, 18]) is produced as a partial match of q2. The par-
tial match in fact determines v2,v4 to be the bindings of vq2 ,vq4
respectively. Based on the partial match, B2 would process
a 2-way interval join over R(a, ∗, v2), R(b, v4, ∗), matches
(eq1, e

q
4) with (e4, e3), (e4, e5), (e6, e3), (e6, e5), and produce

complete matches (e4,e1,e2,e3,[15,15]), (e4,e1,e2,e5,[15,18]),
(e6,e1,e2,e3,[13,15]), (e6,e1,e2,e5,[13,18]). In this way, the
complete result of q2 over G2 is produced.

Similarly, the plan for q3 is composed of three TSRJOINs
C1, C2, and C3. C1 produces the matches of the vq3-centered
2-star pattern as in q2. Then C2 extends each match propagated
from C1 with eq4 to find edge matches for eq4 and determine
bindings for vq1 . Finally, C3 extends each match propagated
from C2 with eq1 to produce complete matches for q3. In
this way, (e4, e1, e2, e3, [15, 15]) is finally produced as the
complete result of q3.

Challenges. The worst-case complexity of a TSRJOIN plan is
O(Q∗P logM+Q∗P·kmax·|Rmax| log |Rmax|+P ·kmax logM).
Q∗P logM is the complexity of original TRIEJOIN as presented
in Section III-A, where Q∗P refers to the upper bound on
the result size of the query with only topological constraints.
Q∗P · kmax · |Rmax| log |Rmax| is the additional complex-
ity introduced by the temporal overlap, where kmax is the
largest number of TSRs processed in a single TSRJOIN in a
plan. P · kmax logM is additional cost of filtering based on

the cardinality P of partial matches produced by TSRjoins.
Compared to the existing methods following PT and TP

pipelines, our TSRJOIN approach takes full advantage of
the selectivity of both topological and temporal predicates.
Also, the logarithmic complexity of the TSR representation
and partial match production guarantees that little additional
cost is introduced in query processing. In this way, TSRJOIN
is expected to be more efficient in temporal-clique subgraph
query processing. However, there are several areas in which
the efficiency of TSRJOIN can be further improved. We
summarize these opportunities as follows:
• Many irrelevant edges can be scanned in partial match

production. Continuing our running example in Table I,
e1, e6, e11, e2, e7, e3, e9, e10, e5 are all irrelevant edges
since only (e4, e8, e12, [15, 15]) is produced as a match.
This demonstrates that the edges can introduce significant
scanning cost in processing selective queries.

• The enumeration of new partial matches can be costly
since each scanned edge would lead to the invoking of
enumActive, which normally traverses almost the whole
Active.

V. OPTIMIZATIONS

Skipping irrelevant edges. We start by categorizing the
irrelevant edges by the time they are scanned (i.e., start
time). We call the irrelevant edges scanned before the first
partial match is produced the backward edges. We call the
irrelevant edges scanned after the last partial match is pro-
duced the forward edges. Continuing our running example,
{e1, e6, e11, e2, e7, e3} and {e9, e10, e5} are respectively the
collection of backward and forward edges.

We introduce the earliest concurrent in TSRs to skip
backward edges. The notation of earliest concurrent is first
proposed by Zhu et.al. [28] in temporal overlapping clique
enumeration. Given a temporal relation R and timestamp t,
the earliest concurrent eC(t) is the start time of the earliest
interval that overlaps t. To support fast look-up, Zhu et al. store
the earliest concurrent as a property of each tuple. We consider
this to be inefficient since a large number of temporally con-
secutive tuples can share the same earliest concurrent, which
generally leads to large redundancy in storage. In this work,
we propose early coverage indexes (ECIs) for more efficient
earliest concurrent retrieving in TSRs. ECIs are composed of
three indexes LS-EC, LD-EC, LSD-EC, which are respectively
used to record the earliest concurrent distribution of TSRs in
form of R(l, s, ∗), R(l, ∗, d), and R(l, s, d). For each TSR,
earliest concurrent distribution is represented by a series of
early coverage tuples. Each early coverage tuple is formalized
as θ : (cs, ce, ec), representing that the earliest concurrent of
each time t ∈ [cs, ce] is ec. For convenience of retrieving,
tuples for each TSR are sorted by cs in ascending order. We
provide the following interface to perform a look-up in ECIs:

• getCoverageTuple(R, t), given a timestamp t and a
TSR R, retrieve the first coverage tuple from correspond-
ing ECI such that t ∈ [cs, ce]. Else, if no such tuple exists,

a

Label Entry

v0

LS-EC index

a

Label Entry LD-EC index

(0,5,0) (6,10,5) (11,12,10) (13,15,13) (18,20,18)

b v0 (1,3,1) (9,12,9) (13,15,13) (17,20,17)

c v0 (3,5,3) (15,16,15)

v6 (2,2,2)

b

c v11 v12v1

(3,5,3) (15,16,15)(2,2,2)

v1 v2 v3

(0,5,0) (5,10,5) (10,12,10)

v4 v5

(13,15,13) (18,20,18)

v1 v2 v3

(1,3,1) (9,12,9) (13,15,13)

v4 v5

(17,20,17) (18,20,18)

Fig. 6. The LS-EC and LD-EC structures of graph G1.

return the first coverage tuple from correpsonding ECI
such that cs > t. Otherwise, return ∅.

Example. Figure 6 presents the structure of LS-EC
and LD-EC, where the early coverage tuples are cat-
egorized in the same way as in LS and LD. Using
getCoverageTuple(R(a, v0, ∗), 1), tuple (0, 5, 0) in LS-EC
is returned. (0, 5, 0) represents that in TSR R(a, v0, ∗), the
earliest concurrent of time t ∈ [0, 5] is 0. In this way, we obtain
that eC(1) = 0. getCoverageTuple(R(b, ∗, v1), 1), returns
(1, 3, 1) in LD-EC.

The construction complexity of ECIs are O(|L| + |V |2 +
|E| + Θ · log Θ), where Θ is the number of coverage tuples.
Comparing to storing the earliest concurrent as tuple property
in [28], ECIs stores the earliest concurrent in form of early
coverage tuples. This guarantees distinct earliest concurrent
value is only stored once in a relation, which significantly
improves the efficiency of storage.

Using ECIs, Algorithm 2 presents our final method to skip
backward edges by computing the optimized starting points
for Scancurs. The basic idea of the algorithm is to find the
first collection of coverage tuples θ1 . . . θk for R1 . . . Rk such
that the intersection of [θ1.ec, θ1.ce] . . . [θk.ec, θk.ce] is not
empty. Based on the notation of earliest concurrent, it can be
deduced that each coverage tuple θi reveals that the longest
interval in Ri starting at t = θi.ec is [θi.ec, θi.ce]. In this
way, the first non-empty [θ1.ec, θ1.ce] ∩ · · · ∩ [θk.ec, θk.ce] in
fact demonstrates that the first match is going to produced
at the maximal time among θ1.ec . . . θk.ec. Also, edges in
Ri with start time no smaller than θi.ec can be relevant to
partial matches. In this way, Scancur[i] can start from the
θi.ec, instead of very beginning of Ri.

Example. Continuing our running example and using Algo-
rithm 2, Scancur[1, 2, 3] can respectively start from e4, e8, e12
instead of e1, e6, e11. In this way, the irrelevant edges

e1, e6, e11, e2, e7, e3 can be skipped.

Algorithm 2: OptimizeStartPoint
Input: r-TSRs R1, . . . , Rk, start time of valid window ws

Output: optimized starting point tsi , . . . , t
s
k

1 t← ws

2 while true do
3 for i ∈ [1, k] do
4 θi ← getCoverageTuple(Ri, t0)
5 if θi = ∅ then
6 return −1, . . .− 1

7 if [θ1.ec, θ1.ce] ∩ . . . ∩ [θk.ec, θk.ce] 6= ∅ then
8 break

9 t← max
i∈[1,k]

θi.ec

10 return θ1.ec, . . . , θk.ec

To skip the forward edges, we propose delSkip operation
as a replacement of delActive. Besides removing expired
edges from Active, delSkip can additionally identify and skip
some forward edges. Algorithm 3 presents the procedure in
delSkip. If the operation deletes all edges in an Active[i] and
finds Scancur[i] is closed, it returns false indicating that the
following scanned edges are all forward edges and should be
skipped.

Algorithm 3: delSkip
Input: active-list Active, timestamp t, scanner list Scancur

Output: false if subsequent edges-scanning are
non-productive

1 for i ∈ [1, k] do
2 for e ∈ Active[i] do
3 if τ(e).te ≥ t then break
4 Active[i]← Active[i]/{e}
5 if Active[i] = ∅ and Scancur[i] is closed then
6 return false

7 return true

Example. Continuing our running example, when e9 starting
at t = 17 is scanned, delSkip is first invoked to remove
the expired edges e4, e8, e12 from Active. Since Active[3]
becomes empty after delSkip and R3 has been closed when
e12 is scanned, delSkip returns false which indicates later
edge-scans are irrelevant and should be stopped. In this way,
the scanning on irrelevant edges e5, e10 can be skipped.

Lazy enumeration. We introduce lazy enumeration to reduce
the traversal cost on Active in partial match production. Given
current timestamp t and scanner Scancur[i], the basic idea
of lazy enumeration is not to carry out enumeration until all
edges with ts = t in Ri have been scanned by Scancur[i].
A dedicated structure named candidate list (C) is maintained
to record the edges starting at current time. For each edge e
scanned by Scancur[i], if τ(e).ts = t, algorithm adds e into
C instead of traversing Active to enumerate partial results
containing e. Otherwise, if τ(e).ts > t or sc is switched to

another r-TSR, algorithm traverses Active, enumerates partial
matches containing each element in C, and finally cleans all
elements in C. We define the following operation to replace
enumActive and support lazy enumeration in LFTO.

• enumLazy(Active, C): enumerate all partial matches
over the elements in Active, which contains an occur-
rence of edge in C if C 6= ∅.

Considering n edges in Ri starting at time t, the
complexity of enumeration in Algorithm 1 is O(n ·∏i−1

j=1 |Active(j)| ·
∏k

j=i+1 |Active(j)|). Using the lazy enu-
meration, the complexity is reduced to O(

∏i−1
j=1 |Active(j)| ·∏k

j=i+1 |Active(j)|). In this way, the traversal cost on Active
is significantly reduced.

Optimized LFTO. Using our proposed optimization, Algo-
rithm 4 presents the procedure of optimized LFTO method.
Comparing to the original LFTO in Algorithm 1, scanning
and enumeration cost in Algorithm 4 are significantly reduced
according to our analysis in this section. In this way, the
performance of the TSRJOIN is improved.

Algorithm 4: Optimized Leapfrog temporal overlap
Input: Output: the same as Algorithm 1

1 ts[1, . . . , k]← OptimizeStartPoint(R1 . . . Rk, ws)
2 if ts[1] = −1 then return ∅
3 for i ∈ [1, k] do
4 Scancur[i]← Ri.lower(ts[i])
5 Scanend[i]← Ri.edges.upper(we)

6 Active← ∅, Result← ∅, C ← ∅
7 inRange← false, t′ ← 0, i′ ← −1
8 while ∃j ∈ [1, k] s.t. Scancur[j] is not closed do
9 sc← Scancur[i] s.t. min

i∈[1,k]
τ(Scancur[i].e).ts

10 e← sc.e
11 if e.ts < ws then
12 if e.te >= ws then insActive(Active, e, i)

13 else
14 if t′ 6= e.te or i′ 6= i then
15 if inRange = false then
16 Result← Result ∪ enumLazy(Active, ∅)
17 inRange← true

18 else
19 if delSkip(Active, t′, Scancur) = false

then break
20 Result← Result∪enumLazy(Active, C)
21 C ← ∅

22 insActive(Active, e, i), C ← C ∪ {e}
23 t′ ← e.ts, i

′ ← i, sc.next()
24 if Scancur[i] = Scanend[i] then
25 Close Scancur[i] and Scanend[i]

26 return Result

Example. Continuing our running example, the q1 process-
ing procedure in Table I can be significantly optimized by
using Algorithm 4, as shown in Table II.

TABLE II
AN EXAMPLE OF THE OPTIMIZED LFTO ALGORITHM.

Edge Active Enumerate
e4 [1]:{e4} ∅
e8 [1]:{e4},[2]:{e8} ∅
e12 [1]:{e4},[2]:{e8},[3]:{e12} (e4, e8, e12, [15, 15])
e9 [2] : {e9} ∅

VI. EXPERIMENTS

Environment. Our experiments were carried out on a server
with 192GB RAM and 2 Intel(R) Xeon(R) CPU X5670 with
6 cores at 2.93GHz running a Linux operating system. We
implemented the in-memory versions of TSRJOIN in AVANT-
GRAPH.1 In all experiments, we used vectorized execution
and set the tuple output (i.e., the maximal number of tuples
produced in each pull) of each operator to 1024.

Competitors. We use three standard state-of-the-art methods,
two (namely HYBRID and BINARY) following PT pipeline
and one (namely TIME) following TP pipeline, as competitors
to TSRJOIN. These three competitors are all implemented in
AVANTGRAPH. In BINARY, a plan composed of binary joins
and selection operators is used for each query’s processing.
In HYBRID, however, both binary and TRIEJOIN are used
since hybrid plans are considered to be more efficient in
many situations in static subgraph query processing [16].
Note that HYBRID is a straightforward extension of TRIEJOIN
which allows to process temporal-clique subgraph queries.
In both BINARY and HYBRID, label adjacency indexes2 are
constructed to fully cover the access patterns during topologi-
cal subgraph matching. In TIME,the STI-CP [28] algorithm
is first used to find the overlapping cliques and solve the
temporal predicates. Then, an execution plan composed of only
binary join operators is used to solve the topological predicates
in cliques. A corresponding STI-CP index is constructed to
support the enumeration of overlapping cliques in the STI-CP
algorithm. All implementations are single-core.

Example. Figure 8 presents the execution plans in BINARY,
HYBRID, and TIME approaches which process q1 over G1. In
BINARY and HYBRID plan, temporal selections follow each
topological join (either a binary join or a TRIEJOIN) to filter
the tuples which do not satisfy the temporal predicates. In
TIME plan, an interval self-join algorithm is first invoked to
solve the temporal predicates and produce the overlapping
cliques in a given query window by using an STI-CP index.
Then, a topological plan is used to produce matches based on
the obtained temporal cliques.

Query generation. Our query generation model requires the
following parameters to be specified: (1) the number of queries
N in the workload, (2) the proportion of the size of the query

1AVANTGRAPH is a new-generation graph processing engine developed in
the Database Group at TU Eindhoven. For more information, please refer to
http://avantgraph.io.

2Label adjacency index is a B-tree structure where graph edges are sorted
in LSD or LDS order to represent the static adjacency.

(a) 3-star (b) 4-star (c) 5-star (d) 3-chain (e) 4-chain (f) 5-chain

(g) 3-circle (h) 4-circle (i) 5-circle (j) diamond (k) 4-clique (l) 5-clique

Fig. 7. Subgraph patterns used in the experiment evaluation.

(a) Binary plan for q1

eq
2

Temporal
Selection

Temporal
Selection

eq
3

Temporal
Selection

v2
qv2
q

eq
1

v2
q

Temporal
Selection

eq
2 eq

3

eq
1 eq

3

Temporal
Selection

eq
2

eq
1 eq

3

eq
2

Temporal
Selection

(b) Hybrid Plan for q1

Interval self-join
on G1

eq
2 eq

3

eq
1 eq

2 eq
3

eq
1 eq

3

eq
2

Access
cliques

(c) Time plan for q1

Fig. 8. Examples of plans used in each competitor. Red vertices highlight
the topological joins.

window in relation to the entire time domain l ∈ [0, 1], (3) the
pattern type to be queried, (4) the edge label set L, and (5)
the maximal result size M of each query (this is used to avoid
extremely long running queries). Figure 7 presents the patterns
used in our experiment evaluation. For each k-sized query, k
distinct elements are uniformly drawn from L as the associated
labels of query edges respectively. Then we process the query
and add it to the workload if its result size is in [1,M]. For
each workload, 100 queries are generated in our experiment.
The M -parameterized uniform generating method can produce
the workloads with appropriate selectivity in short time.

Types of experiments. We run four experiments to investigate
the performance of the TSRJOIN: (1) We investigate the
performance of algorithms with respect to query patterns
shown in Figure 7. (2) We process the queries with maximum
output sizes in [1K,10K,100K,1M,10M] to investigate the
performance of algorithms with respect to query selectivity.
(3) We process queries with varying query window l in
[10−2,10−1,1,10,20]% to investigate the scalability of algo-
rithms in dealing with both long- and short-window queries.
(4) We experiment with real-world networks of different sizes.
The largest network used in our experiment has 100 million
edges.

For each algorithm, we use the average execution time (i.e.,
its processing cost) and memory consumed by indexes (i.e.,
its storage cost) to evaluate its efficiency. Each workload is
set to timeout in 105 seconds.

Datasets. Table III presents the overview of our six real-world

3-star 4-star 5-star 3-chain 4-chain 5-chain 3-cir. 4-cir. 5-cir. diam. 4-cliq. 5-cliq.
Pattern type in Yellow (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

Hybrid Binary Time TSRjoin

3-star 4-star 5-star 3-chain 4-chain 5-chain 3-cir. 4-cir. 5-cir. diam. 4-cliq. 5-cliq.
Pattern type in Green (|E|=30M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

3-star 4-star 5-star 3-chain 4-chain 5-chain 3-cir. 4-cir. 5-cir. diam. 4-cliq. 5-cliq.
Pattern type in Bike (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

3-star 4-star 5-star 3-chain 4-chain 5-chain 3-cir. 4-cir. 5-cir. diam. 4-cliq. 5-cliq.
Pattern type in Divvy (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

3-star 4-star 5-star 3-chain 4-chain 5-chain 3-cir. 4-cir. 5-cir. diam. 4-cliq. 5-cliq.
Pattern type in Stack (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

3-star 4-star 5-star 3-chain 4-chain 5-chain 3-cir. 4-cir. 5-cir. diam. 4-cliq. 5-cliq.
Pattern type in CAIDA (|E|=700K)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

Fig. 9. Performance of algorithms with respect to pattern types.

3-star 4-star 5-star 3-chain 4-chain 5-chain 3-cir. 4-cir. 5-cir. diam. 4-cliq. 5-cliq.
Query type in Yellow

105
106
107
108
109

In
te

r.
ca

rd
.

Hybrid Binary Time TSRjoin

Fig. 10. Intermediate cardinality of various subgraph patterns in Yellow
dataset (|E| = 20M).

TABLE III
OVERVIEW OF THE REAL-WORLD NETWORKS USED IN THE EXPERIMENTS.

Name Num. of vertices Num. of edges Len. of domain

Yellow 261 20,000,000 89,741
Green 262 30,000,000 1,636,978
Bike 455 20,000,000 1,207,485

Divvy 1,097 20,000,000 3,245,197
Stack 2,465,111 20,000,000 961,820

CAIDA 31,379 714,016 121

temporal graphs from transportation, social, and networking
domains. Yellow [4], Green [4], Bike [3], Divvy [2] record
the trips from source to target locations. Stack [14] records
the communication among users in StackOverflow. CAIDA [1]
records the relationships among autonomous systems.

Results. Figure 9 presents the processing cost of HYBRID,
BINARY, TIME, and TSRJOIN with respect to queried patterns
in various networks. We fix the length of query window to 10%
of the time domain. The maximal result size of each query is
set to 100K tuples. We note that the TSRJOIN outperforms
all of its competitors in all situations since it fully leverages
the selectivity of both topological and temporal predicates.
Also, we note that TSRJOIN becomes less efficient in Bike
and Divvy, in which edge intervals are much smaller than
those in Yellow and Green. This is because of existence

1K 10K 100K 1M 10M
Output size of 4-star in Yellow (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)
Hybrid Binary Time TSRjoin

1K 10K 100K 1M 10M
Output size of 4-star in Green (|E|=30M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

1K 10K 100K 1M 10M
Output size of 4-star in Bike (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

1K 10K 100K 1M 10M
Output size of 4-star in Divvy (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)
1K 10K 100K 1M 10M

Output size of 4-chain in Yellow (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

1K 10K 100K 1M 10M
Output size of 4-chain in Green (|E|=30M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

1K 10K 100K 1M 10M
Output size of 4-chain in Bike (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

1K 10K 100K 1M 10M
Output size of 4-chain in Divvy (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

1K 10K 100K 1M 10M
Output size of 4-circle in Yellow (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

1K 10K 100K 1M 10M
Output size of 4-circle (|E|=30M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

1K 10K 100K 1M 10M
Output size of 4-circle in Bike (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

1K 10K 100K 1M 10M
Output size of 4-circle in Divvy (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

Fig. 11. Performance of algorithms with respect to query output size.

of more shorter intervals which are more likely to become
irrelevant compared to long intervals as we use sweep-plane
interval join algorithms. In the three competitors, we note
that TIME outperforms the other two PT methods in the four
transportation networks, and loses the advantage in Stack and
CAIDA, where the topological predicates are more selective
than the temporal predicates. In addition, we note that HYBRID
performs the slowest processing in most cases, where all of
its instances have timed out. HYBRID allows for efficient
processing of the topological part of the query by using
TRIEJOIN, but effectively disallows the injection of temporal
predicates into the TRIEJOIN.

To further investigate the findings above, we carry out an
additional experiment, in which the total intermediate result
cardinality is used to evaluate each instance. A threshold of
109 tuples is set for produced intermediate cardinality in each
instance, after which an instance is be forcefully stopped. To
save space, Figure 10 presents the intermediate cardinality of
the additional experiment in Yellow with query output size
fixed to 1000, as an example. We first note that TSRJOIN
produces the smallest intermediate cardinality so that it can
outperform its competitors in most situations. We also note the
intermediate cardinality produced in TIME vs. TSRJOIN while
their difference in processing cost is more significant. This is
due to the scanning of the irrelevant edges in STI-CP and
the significant cost construction of the hash table especially in
selective queries. Finally, we note that at most 2% of workload
in HYBRID has completed which explains the inefficiency of
the HYBRID approach in the previous experiment.

Figure 11 presents the performance of TSRJOIN with

0.01% 0.1% 1% 10% 20%
(a) 4-star: Query length prop in Bike

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

Hybrid Binary Time TSRjoin

20M 40M 60M 80M 100M
(d) 4-star: Number of edges |E| in Bike

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

0.01% 0.1% 1% 10% 20%
(b) 4-chain: Query length prop in Bike

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

20M 40M 60M 80M 100M
(e) 4-chain: Number of edges |E| in Bike

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

0.01% 0.1% 1% 10% 20%
(c) 4-circle: Query length prop in Bike

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

20M 40M 60M 80M 100M
(f) 4-circle: Number of edges |E| in Bike

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

Fig. 12. Performance of algorithms with respect to the query window
((a)∼(c)) and network size ((d)∼(e)).

TABLE IV
STORAGE COST OF ALGORITHMS IN VARIOUS NETWORKS (GB).

Method BINARY HYBRID TIME TSRJOIN

Index label adjacency label adjacency STI-CP TAIs+ECIs

Yellow 4.5 4.5 5.0 7.4
Green 6.4 6.4 7.5 11.8
Bike 4.5 4.5 5.2 9.1

Divvy 4.5 4.5 4.8 9.0
Stack 5.9 5.9 4.5 17.4

CAIDA 0.2 0.2 0.2 0.4

respect to query selectivity, where only results of 4-star, 4-
chain, 4-circle in transportation networks are presented as
examples due to lack of space. We note that the TSRJOIN
outperforms all of its competitors in most situations. The only
exception is the chain processing in Yellow network, in which
our proposal becomes less efficient as selectivity decreases.
This demonstrates that a TSRJOIN-only plan generated by our
proposed planner is not suitable in processing non-selective
chain queries. To illustrate this, consider a variation q′ of our
4-chain query q2 in which eq1, e

q
2, e

q
4 are far more selective

than eq3. Consider a TSRJOIN plan q′ in which the bottom
operator processes the 2-star sub-query centered at vq2 for its
selectivity. The intermediate cardinality produced by the next
operator would be large because partial matches produced by
the bottom operator could only be further extended with eq3
which is regarded as non-selective. This example demonstrates
that the inefficiency in chain processing is due to the low-arity
of chain pattern, which leads to limited choices for TSRJOIN
to bypass non-selective edges. We defer the optimization of
such queries to future work.

Figure 12 presents the performance of TSRJOIN with
respect to query length ((a)∼(c)) and network size ((d)∼(e)).
The networks of varying size in this experiment are obtained
by selecting subsets of predetermined sizes from full networks.
We only present the result in Bike since the performance trend
in other networks is the same. The result demonstrates that
TSRJOIN scales better than its competitors with respect to
query length and network size.

Finally, Table IV presents the index storage cost of each

TABLE V
PRE-PROCESSING COST OF ALGORITHMS IN VARIOUS NETWORKS (SECS).

Method BINARY HYBRID TIME TSRJOIN

Index label adjacency label adjacency STI-CP TAIs+ECIs

Yellow 60.3 61.2 87.7 118.9
Green 97.5 88.2 125.7 172.0
Bike 86.0 81.0 84.9 145.7

Divvy 86.3 77.2 79.7 133.4
Stack 66.6 67.8 270.0 196.8

CAIDA 1.2 1.2 7.0 4.1

algorithm in various networks. We note that in most networks,
TSRJOIN requires at most twice as much space that its com-
petitors in the worst case. And, in Stack, TSRJOIN requires
higher space consumption. This is expected since TSRJOIN
materializes additional structures to support efficient query
processing. Comparing to BINARY and HYBRID in which
label adjacency index is constructed, TSRJOIN additionally
constructs LS and LD trie structure, a copy of edges, and ECIs
for partial result production. Comparing to TIME in which
STI-CP index is constructed, TSRJOIN stores additionally two
copies of edges and the trie structures. Generally, the storage
cost of the three copies is significantly compressed since the
trie structure is used to index the edges sharing labels and
endpoints. Moreover, ECIs significantly reduce the redundancy
in the earliest concurrent storage, which also improves the
efficiency of index storage in TSRJOIN. However, when the
number of vertices become much larger, more additional
storage cost is introduced due to increase in the size of trie
structures. We also present the pre-processing cost on index
construction in Table V, from which the similar conclusion
can be drawn. Summarizing, we consider the time-space trade-
off introduced by the TSRJOIN to be very reasonable as
processing cost is decreased by several orders of magnitude
for a small index construction and storage overhead.

VII. CONCLUDING REMARKS

We proposed the TSRJOIN approach for temporal-clique
subgraph query processing in modern graph database engine.
TSRJOIN is designed to take full advantage of the selectivity
of both topological and temporal predicates in query pro-
cessing. Our experimental study demonstrated that TSRJOIN
outperforms current methods by a wide margin with small
additional storage cost. In future work, we plan to study query
optimization strategies which target a hybrid of binary and
TSRJOIN plans to resolve performance issues of TSRJOIN-
only plans on certain graph patterns (e.g., selective chains).

REFERENCES

[1] The caida as relationships dataset, 2004-2007. https://www.caida.org/
data/as-relationships/.

[2] Divvy System Data. https://www.divvybikes.com/system-data, 2019.
[3] NYC Citi Bike. https://www.citibikenyc.com/system-data, 2019.
[4] NYC TLC Trip Record Data. https://www1.nyc.gov/site/tlc/about/

tlc-trip-record-data.page, 2019.

[5] Christopher R Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle
Olukotun, and Christopher Ré. Emptyheaded: A relational engine for
graph processing. ACM Transactions on Database Systems (TODS),
42(4):1–44, 2017.

[6] Angela Bonifati, George Fletcher, Hannes Voigt, and Nikolay Yakovets.
Querying Graphs. Morgan & Claypool Publishers, 2018.

[7] Panagiotis Bouros and Nikos Mamoulis. A forward scan based plane
sweep algorithm for parallel interval joins. PVLDB, 10(11):1346–1357,
2017.

[8] Jaewook Byun, Sungpil Woo, and Daeyoung Kim. Chronograph:
Enabling temporal graph traversals for efficient information diffusion
analysis over time. IEEE Transactions on Knowledge and Data Engi-
neering, 32(3):424–437, 2019.

[9] Maximilian Franzke, Tobias Emrich, Andreas Züfle, and Matthias Renz.
Pattern search in temporal social networks. In Proceedings of the 21st
International Conference on Extending Database Technology, 2018.

[10] Aidan Hogan, Cristian Riveros, Carlos Rojas, and Adrián Soto. A worst-
case optimal join algorithm for sparql. In International Semantic Web
Conference, pages 258–275. Springer, 2019.

[11] Rohit Kumar and Toon Calders. Finding simple temporal cycles in an
interaction network. In TD-LSG@ PKDD/ECML, pages 3–6, 2017.

[12] Longbin Lai, Lu Qin, Xuemin Lin, and Lijun Chang. Scalable subgraph
enumeration in mapreduce. Proceedings of the VLDB Endowment,
8(10):974–985, 2015.

[13] Longbin Lai, Lu Qin, Xuemin Lin, Ying Zhang, Lijun Chang, and Shiyu
Yang. Scalable distributed subgraph enumeration. Proceedings of the
VLDB Endowment, 10(3):217–228, 2016.

[14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

[15] Patrick Mackey, Katherine Porterfield, Erin Fitzhenry, Sutanay Choud-
hury, and George Chin. A chronological edge-driven approach to
temporal subgraph isomorphism. In 2018 IEEE International Conference
on Big Data (Big Data), pages 3972–3979. IEEE, 2018.

[16] Amine Mhedhbi and Semih Salihoglu. Optimizing subgraph queries
by combining binary and worst-case optimal joins. arXiv preprint
arXiv:1903.02076, 2019.

[17] Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case
optimal join algorithms. Journal of the ACM (JACM), 65(3):1–40, 2018.

[18] Dung Nguyen, Molham Aref, Martin Bravenboer, George Kollias,
Hung Q Ngo, Christopher Ré, and Atri Rudra. Join processing for
graph patterns: An old dog with new tricks. In Proceedings of the
GRADES’15, pages 1–8. 2015.

[19] Danila Piatov, Sven Helmer, and Anton Dignös. An interval join
optimized for modern hardware. In Data Engineering (ICDE), 2016
IEEE 32nd International Conference on, pages 1098–1109. IEEE, 2016.

[20] Todd Plantenga. Inexact subgraph isomorphism in mapreduce. Journal
of Parallel and Distributed Computing, 73(2):164–175, 2013.

[21] Shriram Ramesh, Animesh Baranawal, and Yogesh Simmhan. A dis-
tributed path query engine for temporal property graphs. arXiv preprint
arXiv:2002.03274, 2020.

[22] Konstantinos Semertzidis and Evaggelia Pitoura. Top-k durable graph
pattern queries on temporal graphs. IEEE Transactions on Knowledge
and Data Engineering, 31(1):181–194, 2018.

[23] Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li.
Efficient subgraph matching on billion node graphs. arXiv preprint
arXiv:1205.6691, 2012.

[24] Todd L Veldhuizen. Leapfrog triejoin: A simple, worst-case optimal join
algorithm. arXiv preprint arXiv:1210.0481, 2012.

[25] Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang,
and Hejun Wu. Efficient algorithms for temporal path computation.
IEEE Transactions on Knowledge and Data Engineering, 28(11):2927–
2942, 2016.

[26] Huanhuan Wu, Yuzhen Huang, James Cheng, Jinfeng Li, and Yiping
Ke. Reachability and time-based path queries in temporal graphs. In
ICDE, pages 145–156. IEEE, 2016.

[27] Yanxia Xu, Jinjing Huang, Liu An, Zhixu Li, and Zhao Lei. Time-
constrained graph pattern matching in a large temporal graph. In APWeb-
WAIM, 2017.

[28] Kaijie Zhu, George Fletcher, Nikolay Yakovets, Odysseas Papapetrou,
and Yuqing Wu. Scalable temporal clique enumeration. In Proceedings
of the 16th International Symposium on Spatial and Temporal Databases
(SSTD), Vienna, Austria, 08 2019.

