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Efficient query answering over very large graphs is a problem that attracts a significant interest in
the database research community. There are multiple reasons for that. First, graphs are ubiquitous
data structures. For instance, consider the multitude of real-world networks that populate our digital
world. Second, some graphs are very large and grow at a high pace [8]. For instance, consider the
size of social networks on the Web. Finally, graphs do not always have a rich structure that we can
exploit for efficient querying. For instance, consider the content in RDF knowledge bases [6].

The research landscape around graph processing is so large that it is virtually impossible to provide
a list of references without missing some important works. Therefore, we will limit ourselves to refer
to some recent surveys and the references therein [3, 4, 7, 8]. In general, if we look at the most
prominent works in this space, then we can make a couple of important observations. First, many
graph engines tend to focus on a particular workload. For instance, Virtuoso [1] is a state-of-the-art
centralized engine for SPARQL querying while Apache Giraph 1 targets more distributed analytical
workloads. Second, graph engines tend to offer vertical solutions; that is, they provide the entire
technological stack from the parsing of the query to the physical execution. An advantage of focusing
on a specific workload is that we can optimize the computation more effectively than if we would use
a more general-purpose technology. The disadvantage, however, is that the user may have to load
the same graph in multiple databases if she needs to to perform different operations.

In my presentation, I will describe Trident [9] – a new graph database developed at the Vrije
Universiteit Amsterdam with the ambitious goal of providing a “universal” engine that works well in
many scenarios. The development of Trident was driven by two simple principles. The first is that
the engine should be able to support as many workloads as possible. The second is that the engine
should be able to interface efficiently with existing libraries to avoid to “reinvent the wheel”.

The result of our development is a novel architecture that combines several components to provide
both node- and edge-centric computation. These components include a single B+Tree for storing
information about the nodes and a variable lists of binary tables to store adjacency lists of edges.
A distinctive feature is that the binary tables are stored on disk using different layouts, effectively
adapting depending on the structure of the input graph. To support different workloads, Trident
provides a list of low-level primitives that can be used to implement many higher-level operations.

Trident has been built from scratch and works with all major operating systems. It supports
updates and has a small memory footprint. Recently, due to the help of Samsung, it also works on
Android platforms. The list below summarizes some key observations obtained from our experiments:

• Trident supports efficient SPARQL querying, thanks to the coupling with RDF3X [5]. Our
comparison shows that our engine is faster than several leading academic and industrial com-
petitors on multiple SPARQL benchmarks.

• Trident is also capable to deal with ML-based workloads. We compared its performance
on a well-known ML task, namely the learning of graph embeddings [10] and our engine was
significantly faster than an alternative implementation on Tensorflow.

• Trident can interface with the SNAP library [2]; hence it supports many graph algorithms
(e.g., PageRank, triangle counting). Our comparison against the SNAP native storage system
shows that Trident is much faster and can load much bigger graphs.

• Trident has an excellent scalability. In our largest experiment, we managed to load a graph
with 100B edges (1010) in a machine that costs less than $5k.

The presentation will focus on describing the novelty behind Trident, providing details about
its infrastructure and the experiments that we conducted against the state of the art. Trident is
freely available at https://github.com/karmaresearch/trident.

1https://giraph.apache.org/
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